On an algorithmic construction of lump solutions in a 2+1 integrable equation

被引:42
作者
Estevez, P. G. [1 ]
Prada, J. [1 ]
Villarroel, J. [1 ]
机构
[1] Univ Salamanca, Fac Ciencias, E-37008 Salamanca, Spain
关键词
D O I
10.1088/1751-8113/40/26/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The singular manifold method is used to generate lump solutions of a generalized integrable nonlinear Schrodinger equation in 2 + 1 dimensions. We present several essentially different types of lump solutions. The connection between this method and the Ablowitz-Villarroel scheme is also analysed.
引用
收藏
页码:7213 / 7231
页数:19
相关论文
共 27 条
[1]   Solutions to the time dependent Schrodinger and the Kadomtsev-Petviashvili equations [J].
Ablowitz, MJ ;
Villarroel, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (04) :570-573
[2]   A novel class of solutions of the non-stationary Schrodinger and the Kadomtsev-Petviashvili I equations [J].
Ablowitz, MJ ;
Chakravarty, S ;
Trubatch, AD ;
Villarroel, J .
PHYSICS LETTERS A, 2000, 267 (2-3) :132-146
[3]  
ABLOWITZ MJ, 1983, LECT NOTES PHYS, V189, P3
[4]   INVERSE SCATTERING TRANSFORM METHOD AND SOLITON-SOLUTIONS FOR DAVEY-STEWARTSON-II EQUATION [J].
ARKADIEV, VA ;
POGREBKOV, AK ;
POLIVANOV, MC .
PHYSICA D, 1989, 36 (1-2) :189-197
[5]   SPECTRAL TRANSFORM FOR A 2-SPATIAL DIMENSION EXTENSION OF THE DISPERSIVE LONG-WAVE EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (03) :371-387
[6]   Miura transformation between two non-linear equations in 2+1 dimensions [J].
Cervero, JM ;
Estevez, PG .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) :2800-2807
[7]   SOME REDUCTIONS OF THE SELF-DUAL YANG-MILLS EQUATIONS TO INTEGRABLE SYSTEMS IN 2+1-DIMENSIONS [J].
CHAKRAVARTY, S ;
KENT, SL ;
NEWMAN, ET .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) :763-772
[8]   Darboux transformation and solutions for an equation in 2+1 dimensions [J].
Estévez, PG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) :1406-1419
[9]   Singular manifold method for an equation in 2+1 dimensions [J].
Estévez, PG ;
Prada, J .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (Suppl 1) :266-279
[10]   A generalization of the Sine-Gordon equation to 2+1 dimensions [J].
Estévez, PG ;
Prada, J .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2004, 11 (02) :164-179