The existence of positive solutions for the Sturm-Liouville boundary value problems

被引:37
作者
Agarwal, RP
Hong, HL
Yeh, CC
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Natl Cent Univ, Dept Math, Chungli 32054, Taiwan
关键词
Sturm-Liouville boundary value problem; cone; fixed point theorem;
D O I
10.1016/S0898-1221(98)00060-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Sturm-Liouville boundary value problem (p(t)u'(t))' + lambda f(t, u(t)) = 0, 0 < t < 1, alpha(1)u(0) - beta(1)p(0)u'(0) = 0, (BVP) alpha(2)u(1) + beta(2)p(1)u'(1) = 0, where lambda > 0, we shall use a fixed point theorem in a cone to obtain the existence of positive solutions for lambda on a suitable interval.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 8 条
[1]   Singular boundary value problems for superlinear second order ordinary and delay differential equations [J].
Agarwal, RP ;
ORegan, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 130 (02) :333-355
[2]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[3]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 :291-302
[4]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[6]  
GUO DJ, 1988, NONLINEAR PROBLEMS
[7]  
Krasnoselskii M. A., 1964, Positive Solutions of Operator Equations
[8]   On the existence of positive solutions of nonlinear second order differential equations [J].
Lian, WC ;
Wong, FH ;
Yeh, CC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (04) :1117-1126