On an anisotropic Serrin criterion for weak solutions of the Navier-Stokes equations

被引:0
作者
Levy, Guillaume [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, Off 15-16 301, Paris, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 117卷
关键词
Navier-Stokes equations; Weak solutions; Serrin theorem; PARTIAL REGULARITY; UNIQUENESS; BV; SYSTEM; LP;
D O I
10.1016/j.matpur.2018.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we draw on the ideas of [5] to extend the standard Serrin criterion [18] to an anisotropic version thereof. Because we work on weak solutions instead of strong ones, the functions involved have low regularity. Our method summarizes in a joint use of a uniqueness lemma in low regularity and the existence of stronger solutions. The uniqueness part uses duality in a way quite similar to the DiPerna-Lions theory, first developed in [7]. The existence part relies on L-p energy estimates, whose proof may be found in [5], along with an approximation procedure. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:123 / 145
页数:23
相关论文
共 20 条
[1]   Transport equation and Cauchy problem for BV vector fields [J].
Ambrosio, L .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :227-260
[2]  
Ambrosio L, 2008, LECT NOTES UNIONE MA, V5, P3
[3]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[4]  
Chemin JY, 2016, ANN SCI ECOLE NORM S, V49, P131
[5]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[6]   Non uniqueness of bounded solutions for some BV outside a hyperplane vector field [J].
Depauw, N .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (04) :249-252
[7]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[8]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[9]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[10]   Regularity and uniqueness for the Stokes problems [J].
Fabre, C ;
Lebeau, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) :437-475