Evolution of the effective permeability for transient and pore-scale two-phase flow in real porous media

被引:17
作者
Zhang, San [1 ,2 ]
Zhang, Yi [3 ]
Wang, Bo [2 ]
机构
[1] Taizhou Vocat & Tech Coll, Coll Mech & Elect Engn, Taizhou 318000, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[3] Natl Qual Supervis & Inspect Ctr Abras, Zhengzhou 450001, Henan, Peoples R China
关键词
Pore-scale two-phase flow; Level-set method; Porous media; Scanning electron microscopy; Liquid infiltration; Effective permeability; LEVEL-SET METHOD; NUMERICAL-SIMULATION; FLUID-FLOW; COMPOSITES; INFILTRATION; MODEL; WATER; HEAT; PERCOLATION; BEHAVIOR;
D O I
10.1016/j.ijheatmasstransfer.2017.05.124
中图分类号
O414.1 [热力学];
学科分类号
摘要
Permeability is one of the key parameters to model and predict the infiltration or transport process of fluid through a porous media. However, most models and approaches that have been developed experimentally, theoretically or numerically to determine the saturated permeability for steady flow are indirect or based on predefined or virtual porous media models. To the best of our knowledge, the variation behavior of the effective permeability with the infiltration length or time in unsaturated flow based on a real porous media has rarely been considered and is little understood. Herein, we propose a simple numerical method of modelling the infiltration processes of a liquid though a porous media preform based on a real porous media obtained from an experimental scanning electron microscopy (SEM) image and validate it by comparing the simulated results with experimental data. Then, we calculate the unsaturated permeability using Darcy's law based on the results of numerical simulation without any structural parameters of porous media. The evolution of the effective permeability with the time or flow front is then presented, and the relationship between the saturation degree and permeability is also considered. The numerical results indicate that (i) the maximum infiltration length along the macroscopic flow direction globally characterizes the variations of the flow front better than the other parameters: (ii) the effective permeability of an unsaturated porous media decreases exponentially with time and the advancing of the flow front and decreases with the degree of saturation following a power-law trend; and (iii) the saturation evolution may have great effects on the effective permeability of a liquid through a porous media. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1093 / 1105
页数:13
相关论文
共 45 条
[1]   Pore-scale modeling of non-isothermal two phase flow in 2D porous media: Influences of viscosity, capillarity, wettability and heterogeneity [J].
Amiri, H. A. Akhlaghi ;
Hamouda, A. A. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2014, 61 :14-27
[2]  
[Anonymous], 1856, PUBLIC FOUNTAINS CIT
[3]   Upscaling heterogeneous media by asymptotic expansions [J].
Auriault, JL .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2002, 128 (08) :817-822
[4]   Level-set simulations of buoyancy-driven motion of single and multiple bubbles [J].
Balcazar, Nestor ;
Lehrrikuhl, Oriol ;
Jofre, Lluis ;
Oliva, Assensi .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2015, 56 :91-107
[5]   Permeability-porosity relationships in rocks subjected to various evolution processes [J].
Bernabé, Y ;
Mok, U ;
Evans, B .
PURE AND APPLIED GEOPHYSICS, 2003, 160 (5-6) :937-960
[6]   A CONTINUUM METHOD FOR MODELING SURFACE-TENSION [J].
BRACKBILL, JU ;
KOTHE, DB ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) :335-354
[7]  
Carman P.C., 1937, Trans. Inst. Chem. Eng. London, V15, P150, DOI DOI 10.1016/S0263-8762(97)80003-2
[8]   Fluid flow through granular beds [J].
Carman, PC .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 1997, 75 :S32-S48
[9]   Approximation of the two-fluid flow problem for viscoelastic fluids using the level set method and pressure enriched finite element shape functions [J].
Castillo, E. ;
Baiges, J. ;
Codina, R. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2015, 225 :37-53
[10]   Design and preparation of high permeability porous mullite support for membranes by in-situ reaction [J].
Chen, Gangling ;
Ge, Xiutao ;
Wang, Yong ;
Xing, Weihong ;
Guo, Youzhi .
CERAMICS INTERNATIONAL, 2015, 41 (07) :8282-8287