A study of planar toroidal-poloidal beveling of monoblocks on the ITER divertor outer vertical target

被引:10
作者
Gunn, J. P. [1 ]
Hirai, T. [2 ]
Corre, Y. [1 ]
Escourbiac, F. [2 ]
Grosjean, A. [1 ]
Pitts, R. A. [2 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
关键词
ITER; divertor; monoblock shaping; divertor heat flux; TUNGSTEN; PHYSICS;
D O I
10.1088/1741-4326/ab4071
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The design of the monoblocks constituting the ITER divertor vertical targets comprises a simple toroidal (i.e. toroidally-facing) bevel of 0.5 mm in order to magnetically shadow poloidal (i.e. poloidally-running) leading edges, arising from radial misalignments between toroidally neighbouring blocks, from parallel heat loads between and during edge-localised modes (ELMs). Previous studies suggest that excessive heating of long toroidal edges could also occur, possibly leading to melting during ELMs. Furthermore, despite the toroidal bevel, tiny regions of the poloidal leading edges known as 'optical hot spots', accessible along magnetic field lines through toroidal gaps, remain exposed to parallel heat flux from ELMs. The intense heat flux onto those optical hot spots could be large enough to trigger tungsten boiling. A possible solution at the outer vertical target is to implement a planar toroidal-poloidal bevel that would hide all poloidal and toroidal edges and eliminate the optical hot spot. It will be demonstrated that a reasonable 'shallow' toroidal-poloidal bevel solution solves all these problems with minimal trade-offs, under the condition that monoblocks on neighbouring plasma-facing units be well aligned poloidally in order to prevent the appearance of exposed leading edges, meaning, in the worst case, a stepwise downward shift of each toroidally upstream plasma-facing unit by -2 +/- 2 mm with respect to their downstream neighbours. A more deeply beveled solution has also been studied that is immune to poloidal misalignments, but which comprises important trade-offs in terms of higher heat load to the main wetted surface, and excessive ELM heat loads onto the magnetically shadowed side of the toroidal gaps. Unfortunately, due the inclination of magnetic flux surfaces, the planar toroidal-poloidal beveling solution does not work at the inner vertical target, meaning that its application at the outer target alone leaves the inner toroidal gaps unprotected. This, together with the technologically challenging requirement for a high degree of poloidal alignment of toroidally neighbouring plasma-facing units, has led to a decision not to apply the poloidal-toroidal bevel solution on the ITER vertical targets.
引用
收藏
页数:16
相关论文
共 12 条
[1]   Surface modification and droplet formation of tungsten under hot plasma irradiation at the GOL-3 [J].
Arzhannikov, A. V. ;
Bataev, V. A. ;
Bataev, I. A. ;
Burdakov, A. V. ;
Ivanov, I. A. ;
Ivantsivsky, M. V. ;
Kuklin, K. N. ;
Mekler, K. I. ;
Rovenskikh, A. F. ;
Polosatkin, S. V. ;
Postupaev, V. V. ;
Sinitsky, S. L. ;
Shoshin, A. A. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S677-S680
[2]  
Carpentier-Chouchana S, 2014, PHYS SCR T, VT159
[3]   Physics of toroidal gap heat loading on castellated plasma-facing components [J].
Dejarnac, R. ;
Gunn, J. P. ;
Vondracek, P. ;
Kornm, M. ;
Panek, R. ;
Pitts, R. A. .
NUCLEAR MATERIALS AND ENERGY, 2019, 19 (19-27) :19-27
[4]   Heat loads on poloidal and toroidal edges of castellated plasma-facing components in COMPASS [J].
Dejarnac, R. ;
Corre, Y. ;
Vondracek, P. ;
Gaspar, J. ;
Gauthier, E. ;
Gunn, J. P. ;
Komm, M. ;
Gardarein, J. -L. ;
Horacek, J. ;
Hron, M. ;
Matejicek, J. ;
Pitts, R. A. ;
Panek, R. .
NUCLEAR FUSION, 2018, 58 (06)
[5]   Assessment of critical heat flux margins on tungsten monoblocks of the ITER divertor vertical targets [J].
Escourbiac, F. ;
Durocher, A. ;
Fedosov, A. ;
Hirai, T. ;
Pitts, R. A. ;
Gavila, P. ;
Riccardi, B. ;
Kuznetcov, V ;
Volodin, A. ;
Komarov, A. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :2036-2039
[6]   Ion orbit modelling of ELM heat loads on ITER divertor vertical targets [J].
Gunn, J. P. ;
Carpentier-Chouchana, S. ;
Dejarnac, R. ;
Escourbiac, F. ;
Hirai, T. ;
Komm, M. ;
Kukushkin, A. ;
Panayotis, S. ;
Pitts, R. A. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :75-83
[7]   Surface heat loads on the ITER divertor vertical targets [J].
Gunn, J. P. ;
Carpentier-Chouchana, S. ;
Escourbiac, F. ;
Hirai, T. ;
Panayotis, S. ;
Pitts, R. A. ;
Corre, Y. ;
Dejarnac, R. ;
Firdaouss, M. ;
Kocan, M. ;
Komm, M. ;
Kukushkin, A. ;
Languille, P. ;
Missirlian, M. ;
Zhao, W. ;
Zhong, G. .
NUCLEAR FUSION, 2017, 57 (04)
[8]   Design optimization of the ITER tungsten divertor vertical targets [J].
Hirai, T. ;
Carpentier-Chouchana, S. ;
Escourbiac, F. ;
Panayotis, S. ;
Durocher, A. ;
Ferrand, L. ;
Garcia-Martinez, M. ;
Gunn, J. P. ;
Komarov, V. ;
Merola, M. ;
Pitts, R. A. ;
De Temmerman, G. .
FUSION ENGINEERING AND DESIGN, 2018, 127 :66-72
[9]   ITER tungsten divertor design development and qualification program [J].
Hirai, T. ;
Escourbiac, F. ;
Carpentier-Chouchana, S. ;
Fedosov, A. ;
Ferrand, L. ;
Jokinen, T. ;
Komarov, V. ;
Kukushkin, A. ;
Merola, M. ;
Mitteau, R. ;
Pitts, R. A. ;
Shu, W. ;
Sugihara, M. ;
Riccardi, B. ;
Suzuki, S. ;
Villari, R. .
FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) :1798-1801
[10]   Particle-in-cell simulations of the plasma interaction with poloidal gaps in the ITER divertor outer vertical target [J].
Komm, M. ;
Gunn, J. P. ;
Dejarnac, R. ;
Panek, R. ;
Pitts, R. A. ;
Podolnik, A. .
NUCLEAR FUSION, 2017, 57 (12)