Semisolid extrusion of low-carbon steel

被引:4
|
作者
Sugiyama, Sumio [1 ]
Li, Jingyuan [1 ]
Yanagimoto, Jun [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
关键词
semisolid; extrusion; low-carbon steel; microstructure change; gradient composite;
D O I
10.2320/matertrans.48.807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The semisolid state behavior and semisolid extrusion properties of low-carbon steel were investigated, focusing on the possibility of clarifying a semisolid-forming process. First, the cooling curve of low-carbon steel is assessed by thermal analysis, so as to clarify the semisolid temperature range. The microstructure of the hot-rolled bar obtained at the semisolid temperature is the globular structure similar to those of aluminum and magnesium alloys. Then, to obtain a better understanding of the semisolid deformation behavior of the material, extrusion tests are carried out at various billet temperatures and cooling conditions at the die exit. To prevent the temperature decrease of the billet, a graphite case and block surrounding the billet acted as an insulator in the extrusion tests. The mechanical properties and the microstructure of the extruded products are evaluated and discussed, i.e., the extrusion force in the semisolid state is less than half that of the hot extrusion. The distribution of chemical components, such as carbon, is measured in the radial direction of the cross section of the products. The room-temperature hardness of the as-extruded products shows a specific distribution from the surface to the center. The hardness at the center is approximately two times greater than that at the surface.
引用
收藏
页码:807 / 812
页数:6
相关论文
共 50 条
  • [41] Microstructure and mechanical properties of medium-carbon steel bonded on low-carbon steel by explosive welding
    Borchers, C.
    Lenz, M.
    Deutges, M.
    Klein, H.
    Gaertner, F.
    Hammerschmidt, M.
    Kreye, H.
    MATERIALS & DESIGN, 2016, 89 : 369 - 376
  • [42] DEVELOPMENT OF A NEW LOW-CARBON LOW-ALLOY STEEL SUITED TO BE CLAD WITH STAINLESS-STEEL
    HASHIMOTO, Y
    HASUKA, K
    MINAMINO, S
    SHINOHARA, K
    ISIJ INTERNATIONAL, 1991, 31 (07) : 706 - 711
  • [43] Effects of Solute Carbon on the Work Hardening Behavior of Lath Martensite in Low-Carbon Steel
    Niino, Taku
    Inoue, Junya
    Ojima, Mayumi
    Nambu, Shoichi
    Koseki, Toshihiko
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2020, 106 (07): : 488 - 496
  • [44] Effects of Solute Carbon on the Work Hardening Behavior of Lath Martensite in Low-Carbon Steel
    Niino, Taku
    Inoue, Junya
    Ojima, Mayumi
    Nambu, Shoichi
    Koseki, Toshihiko
    ISIJ INTERNATIONAL, 2017, 57 (01) : 181 - 188
  • [45] Constitutive Modeling of Flow Behavior and Processing Maps of a Low-Carbon Steel
    Chaoqun Li
    Liwen Zhang
    Fei Li
    Chi Zhang
    Peigang Mao
    Journal of Materials Engineering and Performance, 2022, 31 : 895 - 906
  • [46] Microstructure and properties of low-carbon weld steel after thermomechanical strengthening
    Schastlivtsev, V. M.
    Tabatchikova, T. I.
    Yakovleva, I. L.
    Klyueva, S. Yu
    Kruglova, A. A.
    Khlusova, E. I.
    Orlov, V. V.
    PHYSICS OF METALS AND METALLOGRAPHY, 2012, 113 (05) : 480 - 488
  • [47] Effects of corrosion pits on the combined hardening behavior of low-carbon steel
    Wang, Youde
    Zhou, Xiaodong
    Kong, Zhengyi
    Xu, Shanhua
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 447
  • [48] Effect of Stress on Variant Selection in Lath Martensite in Low-carbon Steel
    Mishiro, Yamato
    Nambu, Shoichi
    Inoue, Junya
    Koseki, Toshihiko
    ISIJ INTERNATIONAL, 2013, 53 (08) : 1453 - 1461
  • [49] Elevation of the Reliability of Corrosion Monitoring of Low-Carbon Steel in Tap Water
    R. Yu. Herasymenko
    H. S. Vasyl’ev
    Yu. S. Herasymenko
    Materials Science, 2017, 53 : 337 - 342
  • [50] Research on Welding Test of Grey Cast Iron and Low-Carbon Steel
    LIU Cui-rong 1
    2.Taiyuan Chemical Factory
    厦门大学学报(自然科学版), 2002, (S1) : 300 - 300