Variational multiscale a posteriori error estimation for systems: The Euler and Navier-Stokes equations

被引:15
|
作者
Hauke, Guillermo [1 ]
Fuster, Daniel [1 ]
Lizarraga, Fernando [1 ]
机构
[1] Univ Zaragoza, CSIC, Liftec, Escuela Ingn & Arquitectura,Area Mecan Fluidos, Zaragoza 50018, Spain
关键词
A posteriori error estimation; Euler equations; Navier-Stokes equations; Stabilized methods; Variational multiscale method; FINITE-ELEMENT METHODS; LEAST-SQUARES DISCRETIZATIONS; COMPUTATIONAL FLUID-DYNAMICS; FUNCTIONAL OUTPUTS; COMPRESSIBLE EULER; GRID ADAPTATION; STABILIZATION OPERATORS; INTRINSIC SCALES; DIFFUSION; FORMULATION;
D O I
10.1016/j.cma.2014.10.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper extends explicit a posteriori error estimators based on the variational multiscale theory to systems of equations. In particular, the emphasis is placed on flow problems: the Euler and Navier-Stokes equations. Three error estimators are proposed: the standard, the naive and the upper bound. Numerical results show that with a very economical algorithm the attained global and local efficiencies for the naive approach are reasonably close to unity whereas the standard and upper bound approaches give, respectively, approximate lower and higher error estimates. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1493 / 1524
页数:32
相关论文
共 50 条