Square-wave oscillations in a semiconductor ring laser subject to counter-directional delayed mutual feedback

被引:24
作者
Li, Song-Sui [1 ]
Li, Xiao-Zhou [1 ]
Zhuang, Jun-Ping [1 ]
Mezosi, Gabor [2 ]
Sorel, Marc [2 ]
Chan, Sze-Chun [1 ,3 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
[3] City Univ Hong Kong, State Key Lab Millimeter Waves, Hong Kong, Hong Kong, Peoples R China
关键词
ROTATED OPTICAL FEEDBACK; DIODE-LASERS; BISTABILITY; STABILITY; MODEL;
D O I
10.1364/OL.41.000812
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Square-wave (SW) switching of the lasing direction in a semiconductor ring laser (SRL) is investigated using counter-directional mutual feedback. The SRL is electrically biased to a regime that supports lasing in either counter-clockwise (CCW) or clockwise (CW) direction. The CCW and CW modes are then counter-directionally coupled by optical feedback, where the CCW-to-CW and CW-to-CCW feedback are delayed by tau(1) and tau(2), respectively. The mutual feedback invokes SW oscillations of the CCW and CW emission intensities with a period of T approximate to tau(1) + tau(2). When tau(1) = tau(2), symmetric SWs with a duty cycle of 50% are obtained, where the switching time and electrical linewidth of the SWs can be reduced to, respectively, 1.4 ns and 1.1 kHz by strengthening the feedback. When tau(1). tau(2), asymmetric SWs are obtained with a tunable duty cycle of tau(1)/(tau(1) + tau(2)). High-order symmetric SWs with a period of T = (tau(1) + tau(2))/n can also be observed for some integer n. Symmetric SWs of order n = 13 with a period of T = 10.3 ns are observed experimentally. (C) 2016 Optical Society of America
引用
收藏
页码:812 / 815
页数:4
相关论文
共 25 条
[1]   Topological insight into the non-Arrhenius mode hopping of semiconductor ring lasers [J].
Beri, S. ;
Gelens, L. ;
Mestre, M. ;
Van der Sande, G. ;
Verschaffelt, G. ;
Scire, A. ;
Mezosi, G. ;
Sorel, M. ;
Danckaert, J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[2]   Frequency-Domain Model of Longitudinal Mode Interaction in Semiconductor Ring Lasers [J].
Cai, Xinlun ;
Ho, Ying-Lung Daniel ;
Mezosi, Gabor ;
Wang, Zhuoran ;
Sorel, Marc ;
Yu, Siyuan .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2012, 48 (03) :406-418
[3]   Semiconductor ring laser subject to delayed optical feedback: Bifurcations and stability [J].
Ermakov, Ilya V. ;
Van der Sande, Guy ;
Danckaert, Jan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) :4767-4779
[4]   All-optical controlled switching between time-periodic square waves in diode lasers with delayed feedback [J].
Friart, Gaetan ;
Verschaffelt, Guy ;
Danckaert, Jan ;
Erneux, Thomas .
OPTICS LETTERS, 2014, 39 (21) :6098-6101
[5]   Relaxation and square-wave oscillations in a semiconductor laser with polarization rotated optical feedback [J].
Friart, Gaetan ;
Weicker, Lionel ;
Danckaert, Jan ;
Erneux, Thomas .
OPTICS EXPRESS, 2014, 22 (06) :6905-6918
[6]   Square-wave self-modulation in diode lasers with polarization-rotated optical feedback [J].
Gavrielides, Athanasios ;
Erneux, Thomas ;
Sukow, David W. ;
Burner, Guinevere ;
McLachlan, Taylor ;
Miller, John ;
Amonette, Jake .
OPTICS LETTERS, 2006, 31 (13) :2006-2008
[7]   All-Optical Directional Switching of Bistable Semiconductor Ring Lasers [J].
Javaloyes, Julien ;
Balle, Salvador .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2011, 47 (08) :1078-1085
[8]   Emission Directionality of Semiconductor Ring Lasers: A Traveling-Wave Description [J].
Javaloyes, Julien ;
Balle, Salvador .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2009, 45 (5-6) :431-438
[9]   Optical Square-Wave Clock Generation Based on an All-Optical Flip-Flop [J].
Kaplan, Aaron M. ;
Agrawal, Govind P. ;
Maywar, Drew N. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (07) :489-491
[10]   Characterization of All-Optical Regeneration Potentials of a Bistable Semiconductor Ring Laser [J].
Li, Bei ;
Memon, Muhammad Irfan ;
Mezosi, Gabor ;
Wang, Zhuoran ;
Sorel, Marc ;
Yu, Siyuan .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (19) :4233-4240