THE WEAK-A∞ PROPERTY OF HARMONIC AND p-HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY

被引:38
作者
Hofmann, Steve [1 ]
Le, Phi [2 ]
Maria Martell, Jose [3 ]
Nystrom, Kaj [4 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Syracuse Univ, Math Dept, 215 Carnegie Bldg, Syracuse, NY 13244 USA
[3] CSIC, CSIC, Inst Ciencias Matemat, UAM,UC3M,UCM, C Nicolas Cabrera 13-15, E-28049 Madrid, Spain
[4] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
来源
ANALYSIS & PDE | 2017年 / 10卷 / 03期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
harmonic measure and p-harmonic measure; Poisson kernel; uniform rectifiability; Carleson measures; Green function; weak-A(infinity); ELLIPTIC-OPERATORS; BOUNDARY-BEHAVIOR; POISSON KERNELS; RIESZ TRANSFORM; REIFENBERG FLAT; REGULARITY;
D O I
10.2140/apde.2017.10.513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E subset of Rn+1, n >= 2, be an Ahlfors-David regular set of dimension n. We show that the weak- A 1 property of harmonic measure, for the open set Omega: =Rn+1 \ E, implies uniform rectifiability of E. More generally, we establish a similar result for the Riesz measure, p-harmonic measure, associated to the p-Laplace operator, 1 < p < infinity.
引用
收藏
页码:513 / 558
页数:46
相关论文
共 41 条
  • [1] Potential-theoretic characterizations of nonsmooth domains
    Aikawa, H
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 469 - 482
  • [2] Akman M., 2015, T AM MATH S IN PRESS
  • [3] ALT HW, 1981, J REINE ANGEW MATH, V325, P105
  • [4] [Anonymous], 1999, GRUNDLEHREN MATH WIS
  • [5] The solution of the Kato square root problem for second order elliptic operators on Rn
    Auscher, P
    Hofmann, S
    Lacey, M
    McIntosh, A
    Tchamitchian, P
    [J]. ANNALS OF MATHEMATICS, 2002, 156 (02) : 633 - 654
  • [6] Carleson measures, trees, extrapolation, and T(b) theorems
    Auscher, P
    Hofmann, S
    Muscalu, C
    Tao, T
    Thiele, C
    [J]. PUBLICACIONS MATEMATIQUES, 2002, 46 (02) : 257 - 325
  • [7] Azzam J., 2014, J EUR MATH IN PRESS
  • [8] Azzam J., 2015, PREPRINT
  • [9] Rectifiability of harmonic measure
    Azzam, Jonas
    Hofmann, Steve
    Martell, Jose Maria
    Mayboroda, Svitlana
    Mourgoglou, Mihalis
    Tolsa, Xavier
    Volberg, Alexander
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 703 - 728
  • [10] Bortz S., 2015, REV MAT IBE IN PRESS