Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis

被引:47
作者
Liu, Qingqing [1 ]
Peng, Hongyun [2 ]
Wang, Zhi-An [3 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
[2] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis; Hyperbolic-parabolic system; Diffusion wave; Asymptotic stability; COMPRESSIBLE EULER EQUATIONS; UNIPOLAR HYDRODYNAMIC MODEL; LARGE TIME BEHAVIOR; P-SYSTEM; ASYMPTOTIC-BEHAVIOR; CONSERVATION-LAWS; GLOBAL EXISTENCE; STATIONARY WAVES; SMOOTH SOLUTIONS; STABILITY;
D O I
10.1016/j.jde.2022.01.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with a quasi-linear hyperbolic-parabolic system of persistence and endogenous chemotaxis modelling vasculogenesis. Under some suitable structural assumption on the pressure function, we first predict and derive the system admits a nonlinear diffusion wave in R driven by the damping effect. Then we show that the solution of the concerned system will locally and asymptotically converge to this nonlinear diffusion wave if the wave strength is small. By using the time-weighted energy estimates, we further prove that the convergence rate of the nonlinear diffusion wave is algebraic. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 286
页数:36
相关论文
共 54 条
[1]  
Ambrosi D., 2005, J. Theo. Med., V6, P1
[2]  
[Anonymous], 2007, Transport equations in biology, DOI DOI 10.1007/978-3-7643-7842-4
[3]  
[Anonymous], 1957, An introduction to the study of stellar structures
[4]  
Berthelin F, 2016, COMMUN MATH SCI, V14, P147
[5]   PHASE TRANSITIONS AND BUMP SOLUTIONS OF THE KELLER-SEGEL MODEL WITH VOLUME EXCLUSION [J].
Carrillo, Jose A. ;
Chen, Xinfu ;
Wang, Qi ;
Wang, Zhian ;
Zhang, Lu .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (01) :232-261
[6]   Kinetic and hydrodynamic models of chemotactic aggregation [J].
Chavanis, Pierre-Henri ;
Sire, Clement .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (02) :199-222
[7]  
Choudhuri A. R., 1998, PHYS FLUIDS PLASMAS
[8]   GLOBAL BV SOLUTIONS FOR THE P-SYSTEM WITH FRICTIONAL DAMPING [J].
Dafermos, Constantine M. ;
Pan, Ronghua .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :1190-1205
[9]   SINGULAR CONVERGENCE OF NONLINEAR HYPERBOLIC CHEMOTAXIS SYSTEMS TO KELLER-SEGEL TYPE MODELS [J].
Di Francesco, Marco ;
Donatelli, Donatella .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 13 (01) :79-100
[10]  
Di Russo C., 2012, Rend. Mat. Appl, V32, P117