Beer's Law-Why Integrated Absorbance Depends Linearly on Concentration

被引:71
作者
Mayerhoefer, Thomas G. [1 ,3 ,4 ]
Pipa, Andrei, V [2 ]
Popp, Jurgen [1 ,3 ,4 ]
机构
[1] Leibniz Inst Photon Technol, Spect Imaging, Albert Einstein Str 9, D-07745 Jena, Germany
[2] Leibniz Inst Plasma Sci & Technol, Plasmadiagnost, Felix Hausdorff Str 2, D-17489 Greifswald, Germany
[3] Friedrich Schiller Univ, Inst Phys Chem, Helmholtzweg 4, D-07745 Jena, Germany
[4] Friedrich Schiller Univ, Abbe Ctr Photon, Helmholtzweg 4, D-07745 Jena, Germany
关键词
absorbance; Beer's law; concentration dependence; dispersion analysis; isotropic media; DISPERSION ANALYSIS; ABSORPTION; SPECTROSCOPY; INTENSITIES; DEVIATIONS; REFLECTION; CRYSTALS;
D O I
10.1002/cphc.201900787
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As derived by Max Planck in 1903 from dispersion theory, Beer's law has a fundamental limitation. The concentration dependence of absorbance can deviate from linearity, even in the absence of any interactions or instrumental nonlinearities. Integrated absorbance, not peak absorbance, depends linearly on concentration. The numerical integration of the absorbance leads to maximum deviations from linearity of less than 0.1 %. This deviation is a consequence of a sum rule that was derived from the Kramers-Kronig relations at a time when the fundamental limitation of Beer's law was no longer mentioned in the literature. This sum rule also links concentration to (classical) oscillator strengths and thereby enables the use of dispersion analysis to determine the concentration directly from transmittance and reflectance measurements. Thus, concentration analysis of complex samples, such as layered and/or anisotropic materials, in which Beer's law cannot be applied, can be achieved using dispersion analysis.
引用
收藏
页码:2748 / 2753
页数:6
相关论文
共 47 条
[1]   Extended multiplicative signal correction in vibrational spectroscopy, a tutorial [J].
Afseth, Nils Kristian ;
Kohler, Achim .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 117 :92-99
[2]   SUPERCONVERGENCE AND SUM-RULES FOR OPTICAL-CONSTANTS [J].
ALTARELLI, M ;
DEXTER, DL ;
NUSSENZVEIG, HM ;
SMITH, DY .
PHYSICAL REVIEW B, 1972, 6 (12) :4502-4509
[3]   Understanding Local-Field Correction Factors in the Framework of the Onsager-Bottcher Model [J].
Aubret, Antoine ;
Orrit, Michel ;
Kulzer, Florian .
CHEMPHYSCHEM, 2019, 20 (03) :345-355
[4]   Using Fourier transform IR spectroscopy to analyze biological materials [J].
Baker, Matthew J. ;
Trevisan, Julio ;
Bassan, Paul ;
Bhargava, Rohit ;
Butler, Holly J. ;
Dorling, Konrad M. ;
Fielden, Peter R. ;
Fogarty, Simon W. ;
Fullwood, Nigel J. ;
Heys, Kelly A. ;
Hughes, Caryn ;
Lasch, Peter ;
Martin-Hirsch, Pierre L. ;
Obinaju, Blessing ;
Sockalingum, Ganesh D. ;
Sule-Suso, Josep ;
Strong, Rebecca J. ;
Walsh, Michael J. ;
Wood, Bayden R. ;
Gardner, Peter ;
Martin, Francis L. .
NATURE PROTOCOLS, 2014, 9 (08) :1771-1791
[5]   Resonant Mie Scattering (RMieS) correction of infrared spectra from highly scattering biological samples [J].
Bassan, Paul ;
Kohler, Achim ;
Martens, Harald ;
Lee, Joe ;
Byrne, Hugh J. ;
Dumas, Paul ;
Gazi, Ehsan ;
Brown, Michael ;
Clarke, Noel ;
Gardner, Peter .
ANALYST, 2010, 135 (02) :268-277
[6]  
Beer A, 1852, ANN PHYS CHEM, V86, P78, DOI [10.1002/andp.18521620505, DOI 10.1002/ANDP.18521620505]
[7]  
Born M, 2000, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light
[8]  
Born M., 1933, OPTIK LEHRBUCH ELEKT
[9]  
Chalmers J.M., 2006, Mid-Infrared Spectroscopy: Anomalies, Artifacts and Common Errors
[10]  
Chalmers J.M., 2002, Handbook of vibrational spectroscopy