Using JAGS for Bayesian Cognitive Diagnosis Modeling: A Tutorial

被引:42
|
作者
Zhan, Peida [1 ]
Jiao, Hong [2 ]
Man, Kaiwen [2 ]
Wang, Lijun [1 ]
机构
[1] Zhejiang Normal Univ, Coll Teacher Educ, 688 Yingbin Rd, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Maryland, Dept Human Dev & Quantitat Methodol, 1230C Benjamin Bldg, College Pk, MD 20742 USA
关键词
cognitive diagnosis modeling; Bayesian estimation; Markov chain Monte Carlo; DINA model; DINO model; rRUM; testlet; longitudinal diagnosis; polytomous attributes; HIDDEN MARKOV MODEL; DINA MODEL; HIGHER-ORDER; FIT;
D O I
10.3102/1076998619826040
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy and gate model; the deterministic inputs, noisy or gate model; the linear logistic model; the reduced reparameterized unified model; and the log-linear CDM (LCDM). Further, we introduce the unstructured latent structural model and the higher order latent structural model. We also show how to extend these models to consider polytomous attributes, the testlet effect, and longitudinal diagnosis. Finally, we present an empirical example as a tutorial to illustrate how to use JAGS codes in R.
引用
收藏
页码:473 / 503
页数:31
相关论文
共 50 条
  • [41] A tutorial on variational Bayesian inference
    Fox, Charles W.
    Roberts, Stephen J.
    ARTIFICIAL INTELLIGENCE REVIEW, 2012, 38 (02) : 85 - 95
  • [42] A tutorial on Bayesian models of perception
    Vincent, Benjamin T.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2015, 66 : 103 - 114
  • [43] Examining the multifactorial nature of a cognitive process using Bayesian brain-behavior modeling
    Chen, Rong
    Herskovits, Edward H.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 41 : 117 - 125
  • [44] FoCo: A Shiny App for Formative Assessment using Cognitive Diagnosis Modeling
    Sanz, Susana
    Kreitchmann, Rodrigo S.
    Najera, Pablo
    David Moreno, Jose
    Angel Martinez-Huertas, Jose
    Sorrel, Miguel A.
    PSICOLOGIA EDUCATIVA, 2023, 29 (02): : 149 - 158
  • [45] Bayesian Estimation of Attribute Hierarchy for Cognitive Diagnosis Models
    Chen, Yinghan
    Wang, Shiyu
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2023, 48 (06) : 810 - 841
  • [46] A tutorial on Bayesian inference for dynamical modeling of eye-movement control during reading
    Engbert, Ralf
    Rabe, Maximilian M.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2024, 119
  • [47] Predictive Ppk calculations for biologics and vaccines using a Bayesian approach - a tutorial
    Weusten, Jos
    Hu, Jianfang
    PHARMACEUTICAL STATISTICS, 2025, 24 (01)
  • [48] Bayesian Cognitive State Modeling for Adaptive Serious Games
    Streicher, Alexander
    Aydinbas, Michael
    ADAPTIVE INSTRUCTIONAL SYSTEMS, AIS 2022, 2022, 13332 : 14 - 25
  • [49] The wisdom of the crowd with partial rankings: A Bayesian approach implementing the Thurstone model in JAGS
    Montgomery, Lauren E.
    Bradford, Nora
    Lee, Michael D.
    BEHAVIOR RESEARCH METHODS, 2024, 56 (07) : 8091 - 8104
  • [50] Practical guidelines to minimise language and cognitive confounds in the diagnosis of CAPD: a brief tutorial
    Chermak, Gail D.
    Bamiou, Doris-Eva
    Iliadou, Vasiliki
    Musiek, Frank E.
    INTERNATIONAL JOURNAL OF AUDIOLOGY, 2017, 56 (07) : 499 - 506