Using JAGS for Bayesian Cognitive Diagnosis Modeling: A Tutorial

被引:42
|
作者
Zhan, Peida [1 ]
Jiao, Hong [2 ]
Man, Kaiwen [2 ]
Wang, Lijun [1 ]
机构
[1] Zhejiang Normal Univ, Coll Teacher Educ, 688 Yingbin Rd, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Maryland, Dept Human Dev & Quantitat Methodol, 1230C Benjamin Bldg, College Pk, MD 20742 USA
关键词
cognitive diagnosis modeling; Bayesian estimation; Markov chain Monte Carlo; DINA model; DINO model; rRUM; testlet; longitudinal diagnosis; polytomous attributes; HIDDEN MARKOV MODEL; DINA MODEL; HIGHER-ORDER; FIT;
D O I
10.3102/1076998619826040
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy and gate model; the deterministic inputs, noisy or gate model; the linear logistic model; the reduced reparameterized unified model; and the log-linear CDM (LCDM). Further, we introduce the unstructured latent structural model and the higher order latent structural model. We also show how to extend these models to consider polytomous attributes, the testlet effect, and longitudinal diagnosis. Finally, we present an empirical example as a tutorial to illustrate how to use JAGS codes in R.
引用
收藏
页码:473 / 503
页数:31
相关论文
共 50 条
  • [1] On Bayesian modeling of censored data in JAGS
    Xinyue Qi
    Shouhao Zhou
    Martyn Plummer
    BMC Bioinformatics, 23
  • [2] Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan, second edition
    Kruschke, John K.
    Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition, 2014, : 1 - 759
  • [3] Bayesian Thurstonian models for ranking data using JAGS
    Johnson, Timothy R.
    Kuhn, Kristine M.
    BEHAVIOR RESEARCH METHODS, 2013, 45 (03) : 857 - 872
  • [4] Bayesian Thurstonian models for ranking data using JAGS
    Timothy R. Johnson
    Kristine M. Kuhn
    Behavior Research Methods, 2013, 45 : 857 - 872
  • [5] Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model example)
    Wabersich, Dominik
    Vandekerckhove, Joachim
    BEHAVIOR RESEARCH METHODS, 2014, 46 (01) : 15 - 28
  • [6] Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model example)
    Dominik Wabersich
    Joachim Vandekerckhove
    Behavior Research Methods, 2014, 46 : 15 - 28
  • [7] A Tutorial on Fire Domino Effect Modeling Using Bayesian Networks
    Khakzad, Nima
    MODELLING, 2021, 2 (02): : 240 - 258
  • [8] On Bayesian modeling of censored data in JAGS (vol 23, 102, 2022)
    Qi, Xinyue
    Zhou, Shouhao
    Plummer, Martyn
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [9] Review of doing Bayesian data analysis: a tutorial with R, JAGS, and Stan, 2nd edition
    Gaudet, Charles E.
    CLINICAL NEUROPSYCHOLOGIST, 2017, 31 (6-7) : 1268 - 1270
  • [10] A Tutorial on Cognitive Diagnosis Modeling for Characterizing Mental Health Symptom Profiles Using Existing Item Responses
    Tan, Zhengqi
    de la Torre, Jimmy
    Ma, Wenchao
    Huh, David
    Larimer, Mary E.
    Mun, Eun-Young
    PREVENTION SCIENCE, 2023, 24 (03) : 480 - 492