About sub-Riemannian spheres

被引:6
|
作者
Rifford, L. [1 ]
机构
[1] Univ Paris Sud, Dept Math, F-91405 Orsay, France
关键词
D O I
10.36045/bbms/1161350693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, in absence of singular minimizing curve, the sub-riemannian distance function is locally Lipschitz outside the diagonal and satisfies Sard's theorem. Hence we deduce that the spheres are Lipschitz hypersurfaces for almost every radius in d(SR) (q(0), Q).
引用
收藏
页码:521 / 526
页数:6
相关论文
共 50 条
  • [41] Homogeneous geodesics in sub-Riemannian geometry*
    Podobryaev, Alexey
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 1473 - 1483
  • [42] Sub-Riemannian geometry and nonholonomic mechanics
    Bejancu, Aurel
    ALEXANDRU MYLLER MATHEMATICAL SEMINAR, 2011, 1329 : 16 - 25
  • [43] Model spaces in sub-Riemannian geometry
    Grong, Erlend
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (01) : 77 - 113
  • [44] Heat Kernels in Sub-Riemannian Settings
    Lanconelli, Ermanno
    GEOMETRIC ANALYSIS AND PDES, 2009, 1977 : 35 - 61
  • [45] A sub-Riemannian maximum modulus theorem
    Buseghin, Federico
    Forcillo, Nicolo
    Garofalo, Nicola
    ADVANCES IN CALCULUS OF VARIATIONS, 2025, 18 (01) : 143 - 150
  • [46] Quasiregular Mappings on Sub-Riemannian Manifolds
    Katrin Fässler
    Anton Lukyanenko
    Kirsi Peltonen
    The Journal of Geometric Analysis, 2016, 26 : 1754 - 1794
  • [47] Foucault pendulum and sub-Riemannian geometry
    Anzaldo-Meneses, A.
    Monroy-Perez, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [48] Subharmonic functions in sub-Riemannian settings
    Bonfiglioli, Andrea
    Lanconelli, Ermanno
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (02) : 387 - 441
  • [49] Uniform estimation of sub-Riemannian balls
    Jean F.
    Journal of Dynamical and Control Systems, 2001, 7 (4) : 473 - 500
  • [50] Characteristic Laplacian in Sub-Riemannian Geometry
    Daniel, Jeremy
    Ma, Xiaonan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) : 13290 - 13323