About sub-Riemannian spheres

被引:6
|
作者
Rifford, L. [1 ]
机构
[1] Univ Paris Sud, Dept Math, F-91405 Orsay, France
关键词
D O I
10.36045/bbms/1161350693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, in absence of singular minimizing curve, the sub-riemannian distance function is locally Lipschitz outside the diagonal and satisfies Sard's theorem. Hence we deduce that the spheres are Lipschitz hypersurfaces for almost every radius in d(SR) (q(0), Q).
引用
收藏
页码:521 / 526
页数:6
相关论文
共 50 条
  • [21] ON THE SHORTEST SUB-RIEMANNIAN GEODESICS
    PETROV, NN
    DIFFERENTIAL EQUATIONS, 1994, 30 (05) : 705 - 711
  • [22] Sub-Riemannian Engel Sphere
    Yu. L. Sachkov
    A. Yu. Popov
    Doklady Mathematics, 2021, 104 : 301 - 305
  • [23] Sub-Riemannian interpolation inequalities
    Barilari, Davide
    Rizzi, Luca
    INVENTIONES MATHEMATICAE, 2019, 215 (03) : 977 - 1038
  • [24] Curvature in sub-Riemannian geometry
    Bejancu, Aurel
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [25] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Rory Biggs
    Péter T. Nagy
    Journal of Dynamical and Control Systems, 2016, 22 : 563 - 594
  • [26] Paths in sub-Riemannian geometry
    Jean, F
    NONLINEAR CONTROL IN THE YEAR 2000, VOL 1, 2000, 258 : 569 - 574
  • [27] Classification of sub-Riemannian manifolds
    Vodop'yanov, SK
    Markina, IG
    SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1096 - 1111
  • [28] A problem of sub-Riemannian geometry
    Petrov, NN
    DIFFERENTIAL EQUATIONS, 1995, 31 (06) : 911 - 916
  • [29] Sub-Riemannian Engel Sphere
    Sachkov, Yu L.
    Popov, A. Yu
    DOKLADY MATHEMATICS, 2021, 104 (02) : 301 - 305
  • [30] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    Siberian Mathematical Journal, 1998, 39 : 1096 - 1111