Generating inter-dependent data streams for recommender systems

被引:10
作者
Jakomin, Martin [1 ]
Curk, Tomaz [1 ]
Bosnic, Zoran [1 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, Slovenia
关键词
Synthetic data generator; Multiple data streams; Relational data; Recommender systems; Data fusion; EMPIRICAL-ANALYSIS; ALGORITHMS;
D O I
10.1016/j.simpat.2018.07.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recommender systems are essential tools in modern e-commerce, streaming services, search engines, social networks and many other areas including the scientific community. However, lack of publicly available data hinders the development and evaluation of recommender algorithms. To address this problem, we propose a Generator of Inter-dependent Data Streams (GIDS), capable of generating multiple temporal and inter-dependent synthetic datasets of relational data. The generator is able to simulate a collection of time-changing data streams, helping to effectively evaluate a variety of recommender systems, data fusion algorithms and incremental algorithms. The evaluation using recommender and data fusion algorithms showed that our generator can successfully mimic real datasets in terms of statistical data properties, and achieved performance of recommender systems.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 29 条
[21]  
Salakhutdinov R., 2008, Advances in Neural Information Processing Systems, P1257
[22]  
Schlimmer J. C., 1986, Machine Learning, V1, P317, DOI 10.1007/BF00116895
[23]   Evaluating data mining procedures: techniques for generating artificial data sets [J].
Scott, PD ;
Wilkins, E .
INFORMATION AND SOFTWARE TECHNOLOGY, 1999, 41 (09) :579-587
[24]   First and second order Markov chain models for synthetic generation of wind speed time series [J].
Shamshad, A ;
Bawadi, MA ;
Hussin, WMAW ;
Majid, TA ;
Sanusi, SAM .
ENERGY, 2005, 30 (05) :693-708
[25]  
Street W. N., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P377, DOI 10.1145/502512.502568
[26]   Empirical analysis of attribute-aware recommendation algorithms with variable synthetic data [J].
Tso, Karen H. L. ;
Schmidt-Thieme, Lars .
DATA SCIENCE AND CLASSIFICATION, 2006, :271-+
[27]   Empirical analysis of attribute-aware recommender system algorithms using synthetic data [J].
Computer-based New Media Group, Department of Computer Science, University of Freiburg, Freiburg, Germany .
J. Comput., 2006, 4 (18-29)
[28]   SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms [J].
Van den Bulcke, T ;
Van Leemput, K ;
Naudts, B ;
van Remortel, P ;
Ma, HW ;
Verschoren, A ;
De Moor, B ;
Marchal, K .
BMC BIOINFORMATICS, 2006, 7 (1)
[29]   Data Fusion by Matrix Factorization [J].
Zitnik, Marinka ;
Zupan, Blaz .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (01) :41-53