Generating inter-dependent data streams for recommender systems

被引:10
作者
Jakomin, Martin [1 ]
Curk, Tomaz [1 ]
Bosnic, Zoran [1 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, Ljubljana 1000, Slovenia
关键词
Synthetic data generator; Multiple data streams; Relational data; Recommender systems; Data fusion; EMPIRICAL-ANALYSIS; ALGORITHMS;
D O I
10.1016/j.simpat.2018.07.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recommender systems are essential tools in modern e-commerce, streaming services, search engines, social networks and many other areas including the scientific community. However, lack of publicly available data hinders the development and evaluation of recommender algorithms. To address this problem, we propose a Generator of Inter-dependent Data Streams (GIDS), capable of generating multiple temporal and inter-dependent synthetic datasets of relational data. The generator is able to simulate a collection of time-changing data streams, helping to effectively evaluate a variety of recommender systems, data fusion algorithms and incremental algorithms. The evaluation using recommender and data fusion algorithms showed that our generator can successfully mimic real datasets in terms of statistical data properties, and achieved performance of recommender systems.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 29 条
[1]  
Alzantot M, 2017, SENSEGEN DEEP LEARN, DOI [10.1109/percomw.2017.7917555, DOI 10.1109/PERCOMW.2017.7917555]
[2]  
[Anonymous], 1994, P INT C VERY LARGE D
[3]  
[Anonymous], 2015, Recommender Systems Handbook, DOI [10.1007/978-1-4899-7637-6\\ 6, DOI 10.1007/978-1-4899-7637-6, 10.1007/978-1-4899-7637-66, DOI 10.1145/1454008.1454068]
[4]  
Antulov-Fantulin N., 2014, Discovery Science. DS 2014. Lecture Notes in Computer Science, VVolume 8777, DOI [10.1007/978-3-319-11812-3_3, DOI 10.1007/978-3-319-11812-3_3]
[5]  
Berkovsky S., 2007, USER MODELLING, V4511, DOI [10.1007/978-3-540-73078-1, DOI 10.1007/978-3-540-73078-1]
[6]   Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols [J].
Campos, Pedro G. ;
Diez, Fernando ;
Cantador, Ivan .
USER MODELING AND USER-ADAPTED INTERACTION, 2014, 24 (1-2) :67-119
[7]  
del Carmen Rodriguez-Hernandez M., 2016, PERVASIVE MOBILE COM
[8]  
Ding Y, 2005, Proceedings of the 14th ACM international conference on Information and knowledge management, P485, DOI DOI 10.1145/1099554.1099689
[9]  
Fanaee H., 2016, ARXIV161203772
[10]  
Funk S., 2006, Netflix update: Try this at home