Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

被引:842
|
作者
Anthimopoulos, Marios [1 ,2 ,3 ]
Christodoulidis, Stergios [1 ]
Ebner, Lukas [2 ]
Christe, Andreas [2 ]
Mougiakakou, Stavroula [1 ,2 ]
机构
[1] Univ Bern, ARTORG Ctr Biomed Engn Res, CH-3008 Bern, Switzerland
[2] Inselspital Bern, Univ Hosp Bern, Dept Diagnost Intervent & Pediat Radiol, CH-3010 Bern, Switzerland
[3] Inselspital Bern, Univ Hosp Bern, Dept Emergency Med, CH-3010 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Convolutional neural networks; interstitial lung diseases; texture classification; TISSUE-ANALYSIS;
D O I
10.1109/TMI.2016.2535865
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2 x 2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance (similar to 85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.
引用
收藏
页码:1207 / 1216
页数:10
相关论文
共 50 条
  • [31] Automatic method for classification of groundnut diseases using deep convolutional neural network
    M. P. Vaishnnave
    K. Suganya Devi
    P. Ganeshkumar
    Soft Computing, 2020, 24 : 16347 - 16360
  • [32] Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks
    Beomhee Park
    Heejun Park
    Sang Min Lee
    Joon Beom Seo
    Namkug Kim
    Journal of Digital Imaging, 2019, 32 : 1019 - 1026
  • [33] Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks
    Park, Beomhee
    Park, Heejun
    Lee, Sang Min
    Seo, Joon Beom
    Kim, Namkug
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (06) : 1019 - 1026
  • [34] An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification
    Shen, Shiwen
    Han, Simon X.
    Aberle, Denise R.
    Bui, Alex A.
    Hsu, William
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 128 : 84 - 95
  • [35] A Transfer Learning Method with Deep Convolutional Neural Network for Diffuse Lung Disease Classification
    Shouno, Hayaru
    Suzuki, Satoshi
    Kido, Shoji
    NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 199 - 207
  • [36] Lung and Colon Cancer Classification of Histopathology Images Using Convolutional Neural Network
    Singh O.
    Kashyap K.L.
    Singh K.K.
    SN Computer Science, 5 (2)
  • [37] Lung Disease Classification Using Convolutional Neural Network Based on Histogram Equalization
    Cheng, Yue
    Jia, Ke-Bin
    Feng, Jin-Chao
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 : 6 - 12
  • [38] HISTOPATHOLOGY OF LUNG CANCER CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORK WITH GAMMA CORRECTION
    Setiawan, Wahyudi
    Suhadi, Muhammad Mushlih
    Husni
    Pramudita, Yoga Dwitya
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [39] Efficient Lung Nodule Classification Using Transferable Texture Convolutional Neural Network
    Ali, Imdad
    Muzammil, Muhammad
    Ul Haq, Ihsan
    Khaliq, Amir A.
    Abdullah, Suheel
    IEEE ACCESS, 2020, 8 : 175859 - 175870
  • [40] Lung Nodule Classification Based on Deep Convolutional Neural Networks
    Mendoza Bobadilla, Julio Cesar
    Pedrini, Helio
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 117 - 124