A new conditional region growing approach for an accurate detection of microcalcifications from mammographic images

被引:0
作者
Touil, Asma [1 ,2 ,3 ]
Kalti, Karim [1 ]
Conze, Pierre-Henri [3 ]
Solaiman, Basel [3 ]
Mahjoub, Mohamed Ali [1 ]
机构
[1] Univ Sousse, LATIS Lab Adv Technol & Intelligent Syst, Ecole Natl Ingenieurs Sousse, Sousse 4023, Tunisia
[2] Univ Sousse, Inst Super Informat & Tech Commun, Hammam Sousse 4011, Tunisia
[3] IMT Atlantique, UBL, LaTIM UMR 1101, F-29200 Brest, France
来源
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020) | 2020年
关键词
CLASSIFICATION; SEGMENTATION; CLUSTERS; REMOVAL;
D O I
10.1109/BIBE50027.2020.00132
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we propose a new Conditional Region Growing (CRG) approach with the ability of finding the accurate MC boundaries starting from selected seed points. The starting seed points are determined based on regional maxima detection and superpixel analysis. The region growing step is controlled by a set of criteria derived from prior knowledge to characterize MCs. The key feature is to highlight below each MC to estimate the appropriate criteria and not to use the same parameters for all of them. Defined criteria can be divided into two categories. The first one concerns the neighbourhood searching size. The second one deals with the gradient information and shape evolution within the growing process. Experimental results show the benefits of used criteria in terms of improving the MC delineation qualities.
引用
收藏
页码:777 / 784
页数:8
相关论文
共 30 条
  • [1] Detection of potential microcalcification clusters using multivendor for-presentation digital mammograms for short-term breast cancer risk estimation
    Ali, Maya Alsheh
    Eriksson, Mikael
    Czene, Kamila
    Hall, Per
    Humphreys, Keith
    [J]. MEDICAL PHYSICS, 2019, 46 (04) : 1938 - 1946
  • [2] Andina D., 2013, INT J INTELL COMPUT, V5, P161, DOI DOI 10.1080/1931308X.2013.838070
  • [3] Spatial Enhancement by Dehazing for Detection of Microcalcifications with Convolutional Nets
    Bria, Alessandro
    Marrocco, Claudio
    Galdran, Adrian
    Campilho, Aurelio
    Marchesi, Agnese
    Mordang, Jan-Jurre
    Karssemeijer, Nico
    Molinara, Mario
    Tortorella, Francesco
    [J]. IMAGE ANALYSIS AND PROCESSING (ICIAP 2017), PT II, 2017, 10485 : 288 - 298
  • [4] Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network from Digital Mammograms
    Cai, Hongmin
    Huang, Qinjian
    Rong, Wentao
    Song, Yan
    Li, Jiao
    Wang, Jinhua
    Chen, Jiazhou
    Li, Li
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2019, 2019
  • [5] Chaibou MS, 2016, 2016 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), P489, DOI 10.1109/ATSIP.2016.7523123
  • [6] Ciecholewski M., 2016, J DIGIT IMAGING, P1
  • [7] Quantitative analysis of morphological techniques for automatic classification of micro-calcifications in digitized mammograms
    Diaz-Huerta, C. C.
    Felipe-Riveron, E. M.
    Montano-Zetina, L. M.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (16) : 7361 - 7369
  • [8] Digabel H., 1978, PROC 2 EUROPEAN S QU, V19, P8
  • [9] Evaluating geodesic active contours in microcalcifications segmentation on mammograms
    Duarte, Marcelo A.
    Alvarenga, Andre V.
    Azevedo, Carolina M.
    Calas, Maria Julia G.
    Infantosi, Antonio F. C.
    Pereira, Wagner C. A.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 122 (03) : 304 - 315
  • [10] Gao X., 2017, EXPERT SYST APPL