A symmetrization result for Monge-Ampere type equations

被引:15
作者
Brandolini, Barbara [1 ]
Trombetti, Cristina [1 ]
机构
[1] Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
Monge-Ampere equations; eigenvalue problems;
D O I
10.1002/mana.200410495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some comparison results for Monge-Ampere type equations in dimension two. We also consider the case of eigenfunctions and we derive a kind of "reverse" inequalities. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:467 / 478
页数:12
相关论文
共 26 条
[1]   On the properties of some nonlinear eigenvalues [J].
Alvino, A ;
Ferone, V ;
Trombetti, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (02) :437-451
[2]  
[Anonymous], 1985, REARRANGEMENTS CONVE
[3]  
BAKELMAN IJ, 1994, CONVEX ANAL NONLINEA
[4]   A direct uniqueness proof for equations involving the p-Laplace operator [J].
Belloni, M ;
Kawohl, B .
MANUSCRIPTA MATHEMATICA, 2002, 109 (02) :229-231
[5]   GENERALIZATION OF FREDHOLM ALTERNATIVE FOR NONLINEAR DIFFERENTIAL-OPERATORS [J].
BOCCARDO, L ;
DRABEK, P ;
GIACHETTI, D ;
KUCERA, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (10) :1083-1103
[6]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[8]   REGULARITY OF MONGE-AMPERE EQUATION DET (D2U/DXIDXJ) = F(X,U) [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :41-68
[9]  
Chong K M., 1971, Equimeasurable rearrangements of functions
[10]  
DIAZ JI, 1987, CR ACAD SCI I-MATH, V305, P521