Infinitesimal deformations of time-like surfaces in Minkowski 3-space

被引:0
作者
Zuo, DF [1 ]
Chen, Q
Cheng, Y
Zhou, KH
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
[2] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China
关键词
time-like; deformation; 2+1 dimensional system;
D O I
10.1016/S0252-9602(17)30233-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, infinitesimal deformations of time-like surfaces are investigated in Minkowski 3-space R-2,R-1. It is shown that some given deformations of the time-like surface can be described by 2+1 dimensional integrable systems. Moreover spectral parameters are introduced, and it is proved that deformation families are soliton surfaces' families.
引用
收藏
页码:519 / 528
页数:10
相关论文
共 12 条
[1]  
BOBENKO AI, 1994, HARMONIC MAPS INTEGR, P83
[2]   Integrable system and spacelike surfaces with prescribed mean curvature in Minkowski 3-space [J].
Cao, XF ;
Tian, C .
ACTA MATHEMATICA SCIENTIA, 1999, 19 (01) :91-96
[3]   Spectral transformation of constant mean curvature surfaces in H3 and Weierstrass representation [J].
Chen, Q ;
Cheng, Y .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (08) :1066-1075
[4]   SOLITON ON A VORTEX FILAMENT [J].
HASIMOTO, H .
JOURNAL OF FLUID MECHANICS, 1972, 51 (FEB8) :477-&
[5]   Darboux transformations on timelike constant mean curvature surfaces [J].
Inoguchi, J .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 32 (01) :57-78
[6]  
Konopelchenko BG, 1996, STUD APPL MATH, V96, P9
[7]   The motion of surfaces in geodesic coordinates and 2+1-dimensional breaking soliton equation [J].
Li, YS ;
Chen, CL .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) :2066-2076
[8]  
LI YS, 1999, J PARTIAL DIFF EQS, V12, P85
[9]   A NOTE ON THE MOTION OF SURFACES [J].
MCLACHLAN, RI ;
SEGUR, H .
PHYSICS LETTERS A, 1994, 194 (03) :165-172
[10]   ON THE CLASSIFICATION OF CONSTANT MEAN-CURVATURE TORI [J].
PINKALL, U ;
STERLING, I .
ANNALS OF MATHEMATICS, 1989, 130 (02) :407-451