Plasmonic nanoparticle simulations and inverse design using machine learning

被引:102
作者
He, Jing [1 ]
He, Chang [1 ]
Zheng, Chao [1 ]
Wang, Qian [2 ]
Ye, Jian [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Biomed Engn, State Key Lab Oncogenes & Related Genes, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai Med X Engn Res Ctr, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Ren Ji Hosp, Sch Med, Shanghai Key Lab Gynecol Oncol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
DEEP NEURAL-NETWORKS; ENHANCED RAMAN TAGS; ARTIFICIAL-INTELLIGENCE; NANOSTRUCTURES; CLASSIFICATION; FLUORESCENCE; SCATTERING; CONVERSION;
D O I
10.1039/c9nr03450a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Collective oscillation of quasi-free electrons on the surface of metallic plasmonic nanoparticles (NPs) in the ultraviolet to near-infrared (NIR) region induces a strong electromagnetic enhancement around the NPs, which leads to numerous important applications. These interesting far- and near-field optical characteristics of the plasmonic NPs can be typically obtained from numerical simulations for theoretical guidance of NP design. However, traditional numerical simulations encounter irreconcilable conflicts between the accuracy and speed due to the high demand of computing power. In this work, we utilized the machine learning method, specifically the deep neural network (DNN), to establish mapping between the far-field spectra/near-field distribution and dimensional parameters of three types of plasmonic NPs including nanospheres, nanorods, and dimers. After the training process, both the forward prediction of far-field optical properties and the inverse prediction of on-demand dimensional parameters of NPs can be accomplished accurately and efficiently with the DNN. More importantly, we have achieved for the first time ultrafast and accurate prediction of two-dimensional on-resonance electromagnetic enhancement distributions around NPs by greatly reducing the amount of electromagnetic data via screening and resampling methods. These near-field predictions can be realized typically in less than 10(-2) seconds on a laptop, which is 6 orders faster than typical numerical simulations implemented on a server. Therefore, we demonstrate that the DNN is an ultrafast, highly efficient, and computing resource-saving tool to investigate the far- and near-field optical properties of plasmonic NPs, especially for a number of important nano-optical applications such as surface-enhanced Raman spectroscopy, photocatalysis, solar cells, and metamaterials.
引用
收藏
页码:17444 / 17459
页数:16
相关论文
共 60 条
[1]   Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing [J].
Acimovic, Srdjan S. ;
Kreuzer, Mark P. ;
Gonzalez, Maria U. ;
Quidant, Romain .
ACS NANO, 2009, 3 (05) :1231-1237
[2]   A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles [J].
Aioub, Mena ;
El-Sayed, Mostafa A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) :1258-1264
[3]   Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst [J].
An, Changhua ;
Peng, Sheng ;
Sun, Yugang .
ADVANCED MATERIALS, 2010, 22 (23) :2570-2574
[4]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[5]   A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide [J].
Awazu, Koichi ;
Fujimaki, Makoto ;
Rockstuhl, Carsten ;
Tominaga, Junji ;
Murakami, Hirotaka ;
Ohki, Yoshimichi ;
Yoshida, Naoya ;
Watanabe, Toshiya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (05) :1676-1680
[6]   Nanoscale Control of Optical Heating in Complex Plasmonic Systems [J].
Baffou, Guillaume ;
Quidant, Romain ;
Javier Garcia de Abajo, F. .
ACS NANO, 2010, 4 (02) :709-716
[7]   Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging [J].
Bao, Zhouzhou ;
Zhang, Yuqing ;
Tan, Ziyang ;
Yin, Xia ;
Di, Wen ;
Ye, Jian .
BIOMATERIALS, 2018, 163 :105-115
[8]   Machine learning classification for field distributions of photonic modes [J].
Barth, Carlo ;
Becker, Christiane .
COMMUNICATIONS PHYSICS, 2018, 1
[9]   Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles [J].
Brown, Michael D. ;
Suteewong, Teeraporn ;
Kumar, R. Sai Santosh ;
D'Innocenzo, Valerio ;
Petrozza, Annamaria ;
Lee, Michael M. ;
Wiesner, Ulrich ;
Snaith, Henry J. .
NANO LETTERS, 2011, 11 (02) :438-445
[10]   DNA methylation-based classification of central nervous system tumours [J].
Capper, David ;
Jones, David T. W. ;
Sill, Martin ;
Hovestadt, Volker ;
Schrimpf, Daniel ;
Sturm, Dominik ;
Koelsche, Christian ;
Sahm, Felix ;
Chavez, Lukas ;
Reuss, David E. ;
Kratz, Annekathrin ;
Wefers, Annika K. ;
Huang, Kristin ;
Pajtler, Kristian W. ;
Schweizer, Leonille ;
Stichel, Damian ;
Olar, Adriana ;
Engel, Nils W. ;
Lindenberg, Kerstin ;
Harter, Patrick N. ;
Braczynski, Anne K. ;
Plate, Karl H. ;
Dohmen, Hildegard ;
Garvalov, Boyan K. ;
Coras, Roland ;
Hoelsken, Annett ;
Hewer, Ekkehard ;
Bewerunge-Hudler, Melanie ;
Schick, Matthias ;
Fischer, Roger ;
Beschorner, Rudi ;
Schittenhelm, Jens ;
Staszewski, Ori ;
Wani, Khalida ;
Varlet, Pascale ;
Pages, Melanie ;
Temming, Petra ;
Lohmann, Dietmar ;
Selt, Florian ;
Witt, Hendrik ;
Milde, Till ;
Witt, Olaf ;
Aronica, Eleonora ;
Giangaspero, Felice ;
Rushing, Elisabeth ;
Scheurlen, Wolfram ;
Geisenberger, Christoph ;
Rodriguez, Fausto J. ;
Becker, Albert ;
Preusser, Matthias .
NATURE, 2018, 555 (7697) :469-+