Z2 boundary twist fields and the moduli space of D-branes

被引:5
作者
Mattiello, Luca [1 ]
Sachs, Ivo [1 ]
机构
[1] Ludwig Maximilian Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, Theresienstr 37, D-80333 Munich, Germany
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 07期
关键词
Conformal Field Theory; Conformal Field Models in String Theory; D-branes; N BRANES; CORRELATORS; STRINGS; STATES;
D O I
10.1007/JHEP07(2018)099
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We revisit the boundary conformal field theory of twist fields. Based on the equivalence between twisted bosons on a circle and the orbifold theory at the critical radius, we provide a bosonized representation of boundary twist fields and thus a free field representation of the latter. One advantage of this formulation is that it considerably simplifies the calculation of correlation functions involving twist fields. At the same time this also gives access to higher order terms in the operator product expansions of the latter which, in turn, allows to explore the moduli space of marginal deformation of bound states of D-branes. In the process we also generalize some results on correlation functions with excited twist fields.
引用
收藏
页数:34
相关论文
共 43 条
  • [1] N-point amplitudes in intersecting brane models
    Abel, SA
    Owen, AW
    [J]. NUCLEAR PHYSICS B, 2004, 682 (1-2) : 183 - 216
  • [2] Interactions in intersecting brane models
    Abel, SA
    Owen, AW
    [J]. NUCLEAR PHYSICS B, 2003, 663 (1-2) : 197 - 214
  • [3] ANASTASOPOULOS P, 2013, J HIGH ENERGY PHYS
  • [4] Light stringy states
    Anastasopoulos, Pascal
    Bianchi, Massimo
    Richter, Robert
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (03):
  • [5] [Anonymous], 2009, J STAT MECH-THEORY E, DOI DOI 10.1088/1742-5468/2009/11/P11001
  • [6] [Anonymous], 1998, STRING THEORY, DOI DOI 10.1017/CBO9780511618123
  • [7] [Anonymous], P FIELDS STRINGS DUA
  • [8] Billó M, 2003, J HIGH ENERGY PHYS
  • [9] Entanglement entropy and conformal field theory
    Calabrese, Pasquale
    Cardy, John
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
  • [10] A CRITERION FOR INTEGRABLY MARGINAL OPERATORS
    CHAUDHURI, S
    SCHWARTZ, JA
    [J]. PHYSICS LETTERS B, 1989, 219 (2-3) : 291 - 296