Phase modulated domain walls and dark solitons for surface gravity waves

被引:2
作者
Kaur, Harneet [1 ,2 ]
Pathania, Shailza [1 ]
Goyal, Amit [3 ]
Kumar, C. N. [1 ]
Milovic, Daniela [4 ]
机构
[1] Panjab Univ, Dept Phys, Chandigarh 160014, India
[2] Govt Coll Women, Dept Phys, Karnal 132001, India
[3] Goswami Ganesh Dutta Sanatan Dharma Coll, Dept Phys, Chandigarh 160030, India
[4] Univ Nis, Fac Elect Engn, Dept Telecommun, Medvedeva 14, Nish 18000, Serbia
关键词
Domain walls; Rational solution; Surface gravity waves; Higher-order nonlinear Schrodinger equation;
D O I
10.1016/j.physleta.2021.127227
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report theoretical prediction of localized solutions for dynamics of surface gravity waves, at the critical point kh approximate to 1.363, modelled by higher-order nonlinear Schrodinger equation. The model possesses domain walls (kink solitons) and dark solitons modulated through different phase profiles. The parametric domains are delineated for the existence of soliton solutions. The effects of wave parameters have been discussed on the amplitude of surface gravity waves. Our work is motivated by Tsitoura et al. [1], on experimental and analytical observation of phase domain walls for deep water surface gravity waves modelled by nonlinear Schrodinger equation. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrodinger equation with self-steepening and self-frequency shift [J].
Alka ;
Goyal, Amit ;
Gupta, Rama ;
Kumar, C. N. ;
Raju, Thokala Soloman .
PHYSICAL REVIEW A, 2011, 84 (06)
[2]   DOMAIN-WALLS IN WAVE PATTERNS [J].
ARANSON, I ;
TSIMRING, L .
PHYSICAL REVIEW LETTERS, 1995, 75 (18) :3273-3276
[3]   Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrodinger equation [J].
Arroyo Meza, L. E. ;
de Souza Dutra, A. ;
Hott, M. B. ;
Roy, P. .
PHYSICAL REVIEW E, 2015, 91 (01)
[4]   Wide localized solitons in systems with time- and space-modulated nonlinearities [J].
Arroyo Meza, L. E. ;
de Souza Dutra, A. ;
Hott, M. B. .
PHYSICAL REVIEW E, 2012, 86 (02)
[5]  
BEHERA SN, 1980, PRAMANA, V15, P245, DOI 10.1007/BF02847222
[6]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[7]   INSTABILITY OF PERIODIC WAVETRAINS IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 299 (1456) :59-&
[8]   QUANTUM EXPANSION OF SOLITON SOLUTIONS [J].
CHRIST, NH ;
LEE, TD .
PHYSICAL REVIEW D, 1975, 12 (06) :1606-1627
[9]   Traveling two and three dimensional capillary gravity water waves [J].
Craig, W ;
Nicholls, DP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (02) :323-359
[10]   WAVE-NUMBER SELECTION AND PERSISTENT DYNAMICS IN MODELS OF CONVECTION [J].
CROSS, MC ;
TESAURO, G ;
GREENSIDE, HS .
PHYSICA D, 1986, 23 (1-3) :12-18