Bohr radius for locally univalent harmonic mappings

被引:66
作者
Kayumov, Ilgiz R. [1 ]
Ponnusamy, Saminathan [2 ]
Shakirov, Nail [1 ]
机构
[1] Kazan Fed Univ, Kremlevskaya 18, Kazan 420008, Russia
[2] Indian Inst Technol Madras, Dept Math, Madras 600036, Tamil Nadu, India
基金
俄罗斯基础研究基金会;
关键词
Bloch space; Bohr radius; harmonic; locally univalent; and analytic functions; K-quasiconformal mappings; Schwarz lemma; BLOCH FUNCTIONS; POWER-SERIES; CONSTANT; THEOREM;
D O I
10.1002/mana.201700068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the class of all sense-preserving harmonic mappings f=h+g of the unit disk D, where h and g are analytic with g(0)=0, and determine the Bohr radius if any one of the following conditions holds: h is bounded in D.h satisfies the condition Re h(z)1 in D with h(0)>0.both h and g are bounded in D.h is bounded and g(0)=0. 1.2.3.4.We also consider the problem of determining the Bohr radius when the supremum of the modulus of the dilatation of f in D is strictly less than 1. In addition, we determine the Bohr radius for the space B of analytic Bloch functions and the space BH of harmonic Bloch functions. The paper concludes with two conjectures.
引用
收藏
页码:1757 / 1768
页数:12
相关论文
共 16 条
[1]  
Abu-Muhanna Y., 2016, Progress in Approximation Theory and Applicable Complex Analysis, P265
[2]   A note on Bohr's phenomenon for power series [J].
Ali, Rosihan M. ;
Barnard, Roger W. ;
Solynin, Alexander Yu. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) :154-167
[3]  
ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
[4]  
[Anonymous], 1973, QUASICONFORMAL MAPPI, DOI DOI 10.1007/978-3-642-65513-5
[5]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[6]  
Avkhadiev FG, 1996, DOKL AKAD NAUK+, V349, P583
[7]  
Bohr H, 1914, P LOND MATH SOC, V13, P1
[8]   LANDAU'S THEOREM AND MARDEN CONSTANT FOR HARMONIC v-BLOCH MAPPINGS [J].
Chen, Sh. ;
Ponnusamy, S. ;
Wang, X. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (01) :19-32
[9]   Landau-Bloch Constants for Functions in α-Bloch Spaces and Hardy Spaces [J].
Chen, Sh ;
Ponnusamy, S. ;
Wang, X. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (05) :1025-1036
[10]  
Chen S, 2011, B MALAYS MATH SCI SO, V34, P255