On the conservation of energy in two-dimensional incompressible flows

被引:6
|
作者
Lanthaler, S. [1 ]
Mishra, S. [1 ]
Pares-Pulido, C. [1 ]
机构
[1] Swiss Fed Inst Technol, Seminar Appl Math, Ramistr 101, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
incompressible flow; incompressible Euler equations; anomalous dissipation; turbulence; structure function; statistical solution; energy conservation; VORTEX SHEET; ONSAGER; HYDRODYNAMICS; DISSIPATION; TURBULENCE; VISCOSITY; EQUATIONS; FLUID;
D O I
10.1088/1361-6544/abb452
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the conservation of energy for weak and statistical solutions of the two-dimensional Euler equations, generated as strong (in an appropriate topology) limits of the underlying Navier-Stokes equations and a Monte Carlo-spectral viscosity numerical approximation, respectively. We characterize this conservation of energy in terms of a uniform decay of the so-called structure function, allowing us to extend existing results on energy conservation. Moreover, we present numerical experiments with a wide variety of initial data to validate our theory and to observe energy conservation in a large class of two-dimensional incompressible flows.
引用
收藏
页码:1084 / 1135
页数:52
相关论文
共 50 条
  • [1] Energy Conservation in Two-dimensional Incompressible Ideal Fluids
    Cheskidov, A.
    Lopes Filho, M. C.
    Nussenzveig Lopes, H. J.
    Shvydkoy, R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 348 (01) : 129 - 143
  • [2] Energy Conservation in Two-dimensional Incompressible Ideal Fluids
    A. Cheskidov
    M. C. Lopes Filho
    H. J. Nussenzveig Lopes
    R. Shvydkoy
    Communications in Mathematical Physics, 2016, 348 : 129 - 143
  • [3] CRITICAL PHENOMENA IN TWO-DIMENSIONAL INCOMPRESSIBLE FLOWS
    ONUKI, A
    KAWASAKI, K
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1980, (69): : 146 - 159
  • [4] AVERAGING OF INCOMPRESSIBLE FLOWS ON TWO-DIMENSIONAL SURFACES
    Dolgopyat, Dmitry
    Koralov, Leonid
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 26 (02) : 427 - 449
  • [5] On the origins of vortex shedding in two-dimensional incompressible flows
    Boghosian, M. E.
    Cassel, K. W.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2016, 30 (06) : 511 - 527
  • [6] Two-dimensional viscous incompressible flows in a porous medium
    Siddiqui, A. M.
    Islam, S.
    Ghori, Q. K.
    JOURNAL OF POROUS MEDIA, 2006, 9 (06) : 591 - 596
  • [8] On the origins of vortex shedding in two-dimensional incompressible flows
    M. E. Boghosian
    K. W. Cassel
    Theoretical and Computational Fluid Dynamics, 2016, 30 : 511 - 527
  • [9] Two-dimensional MRT LB model for compressible and incompressible flows
    Chen, Feng
    Xu, Ai-Guo
    Zhang, Guang-Cai
    Wang, Yong-Long
    FRONTIERS OF PHYSICS, 2014, 9 (02) : 246 - 254
  • [10] EFFICIENT SOLUTIONS OF TWO-DIMENSIONAL INCOMPRESSIBLE STEADY VISCOUS FLOWS
    MORRISON, JH
    NAPOLITANO, M
    COMPUTERS & FLUIDS, 1988, 16 (02) : 119 - 132