Electrospun Bioscaffold Based on Cellulose Acetate and Dendrimer-modified Cellulose Nanocrystals for Controlled Drug Release

被引:27
作者
Mianehro, Ali [1 ]
机构
[1] Amirkabir Univ Technol, Dept Text Engn, Tehran Polytech, Tehran 158754413, Iran
来源
CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS | 2022年 / 3卷
关键词
Cellulose nanocrystal; Polyamidoamide; Electrospinning; Surface modification; Scaffold; controlled release; biomaterial; green chemistry; IN-VITRO DEGRADATION; SCAFFOLDS; NANOCOMPOSITES; COMPOSITES; ACID;
D O I
10.1016/j.carpta.2022.100187
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Side effects of high concentration of drug, related to high initial burst release still are major challenges of pharmacotherapy. This field demands novel drug release control methods. In this research, cellulose nanocrystals were modified via physical adsorption of polyamidoamine and used as an additive into electrospun cellulose acetate matrix. Characterizations confirmed successful modification of CNC, intactness of crystallinity, and perfect antibacterial activity. Zeta potential of the nanoparticles shifted from -12 eV to +23 eV. The modified CNC demonstrated 17800 cm(-1) Stocks shift. The addition of modified CNC to cellulose acetate reduced the nanofiber diameter up to 75% and improved mechanical properties. Electrospun cellulose acetate containing modified CNC perfectly controlled the release rate of tranexamic acid and improved the ultimate release amount of the gatifloxacin. The results of this work pave the way for preparing safe clinically applicable antibacterial bioscaffolds with controlled drug release, without needing any toxic reagent and chemical reaction.
引用
收藏
页数:8
相关论文
共 47 条
[1]   In vitro degradation and possible hydrolytic mechanism of PHBV nanocomposites by incorporating cellulose nanocrystal-ZnO nanohybrids [J].
Abdalkarim, Somia Yassin Hussain ;
Yu, Hou-Yong ;
Song, Mei-Li ;
Zhou, Ying ;
Yao, Juming ;
Ni, Qing-Qing .
CARBOHYDRATE POLYMERS, 2017, 176 :38-49
[2]   Preparation of long-lasting antibacterial wound dressing through diffusion of cationic-liposome-encapsulated polyhexamethylene biguanide [J].
Ahani, Elnaz ;
Montazer, Majid ;
Mianehro, Ali ;
Samadi, Nasrin ;
Toliyat, Tayebeh ;
Rad, Mahnaz Mahmoudi .
REACTIVE & FUNCTIONAL POLYMERS, 2021, 169
[3]   Blend biopolymeric nanofibrous scaffolds of cellulose acetate/ε-polycaprolactone containing metallic nanoparticles prepared by laser ablation for wound disinfection applications [J].
Ahmed, M. K. ;
Menazea, A. A. ;
Abdelghany, A. M. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 155 :636-644
[4]  
Bruschi M.L., 2015, Strategies to Modify the Drug Release from Pharmaceutical Systems, DOI [10.1016/B978-0-08-100092-2.00005-9, DOI 10.1016/B978-0-08-100092-2.00005-9]
[5]   Antibacterial activities of poly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups [J].
Calabretta, Michelle K. ;
Kumar, Amit ;
McDermott, Alison M. ;
Cai, Chengzhi .
BIOMACROMOLECULES, 2007, 8 (06) :1807-1811
[6]   Surface modified cellulose scaffolds for tissue engineering [J].
Courtenay, James C. ;
Johns, Marcus A. ;
Galembeck, Fernando ;
Deneke, Christoph ;
Lanzoni, Evandro M. ;
Costa, Carlos A. ;
Scott, Janet L. ;
Sharma, Ram I. .
CELLULOSE, 2017, 24 (01) :253-267
[7]  
D'Amato Anthony R, 2018, Electrospinning, V2, P15, DOI 10.1515/esp-2018-0002
[8]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[9]  
Dufresne A, 2012, NANOCELLULOSE: FROM NATURE TO HIGH PERFORMANCE TAILORED MATERIALS, P1, DOI 10.1515/9783110254600
[10]   Formulation and characterisation of kappa-carrageenan gels with non-ionic surfactant for melting-triggered controlled release [J].
Fenton, Thomas ;
Kanyuck, Kelsey ;
Mills, Tom ;
Pelan, Eddie .
CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS, 2021, 2