Aspect-ratio dependence of magnetization reversal in cylindrical ferromagnetic nanowires

被引:5
作者
Sultan, Musaab S. [1 ,2 ]
Atkinson, Del [2 ]
机构
[1] Dohuk Polytech Univ, Akre Tech Inst, Duhok, Kurdistan Regio, Iraq
[2] Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England
来源
MATERIALS RESEARCH EXPRESS | 2016年 / 3卷 / 05期
关键词
magnetization reversal; nanowire; micromagnetic simulation; permalloy; NI NANOWIRES; NICKEL; MAGNETORESISTANCE; DYNAMICS; ARRAYS; FE; CO;
D O I
10.1088/2053-1591/3/5/056104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetization reversal behavior in isolated cylindrical and square cross-section Ni81Fe19 nanowires was systematically studied as a function of nanowire cross-section dimensions from 10 up to 200 nm using micromagnetic simulations. This approach provides access to the switching field, remanence ratio and most significantly the magnetization structures during reversal, which allows the evolution of magnetization processes to be studied with scaling of the cross-sectional dimensions. The dimensional trends in reversal behavior for both square and circular cross-section were comparable throughout the range of dimensions studied. The thinnest nanowires showed simple square switching and 100% remanence. With increasing diameter the switching field reduces and above 40 nm the reversal behavior shows an increasing rotational component prior to sharp switching of the magnetization. The magnitude of the reversible component increases with increasing dimensions up to 150 nm, above which the magnetization reversal process is more complicated and the hysteresis loops are no longer bistable. The micromagnetic structures evolve from simple uniform parallel single domain states in the thinnest wires through the formation of vortex-like end states in thicker wires to complex multidomain structures during the reversal of the thickest wires. In the later cases the reversal is not simple curling-like behavior, although the angular switching field dependence was comparable with curling.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Angular dependence of the transverse and vortex modesin magnetic nanotubes [J].
Allende, S. ;
Escrig, J. ;
Altbir, D. ;
Salcedo, E. ;
Bahiana, M. .
EUROPEAN PHYSICAL JOURNAL B, 2008, 66 (01) :37-40
[2]   Magnetic domain-wall logic [J].
Allwood, DA ;
Xiong, G ;
Faulkner, CC ;
Atkinson, D ;
Petit, D ;
Cowburn, RP .
SCIENCE, 2005, 309 (5741) :1688-1692
[3]  
Andra W, 2007, NOVEL MAT, V4
[4]   Magnetic properties of Ni-Fe nanowire arrays: effect of template material and deposition conditions [J].
Aravamudhan, S. ;
Singleton, J. ;
Goddard, P. A. ;
Bhansali, S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (11)
[5]   Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure [J].
Atkinson, D ;
Allwood, DA ;
Xiong, G ;
Cooke, MD ;
Faulkner, CC ;
Cowburn, RP .
NATURE MATERIALS, 2003, 2 (02) :85-87
[6]   Controlling domain wall pinning in planar nanowires by selecting domain wall type and its application in a memory concept [J].
Atkinson, D. ;
Eastwood, D. S. ;
Bogart, L. K. .
APPLIED PHYSICS LETTERS, 2008, 92 (02)
[7]   Domain walls confined in magnetic nanotubes with uniaxial anisotropy [J].
Chen, A. P. ;
Gonzalez, J. ;
Guslienko, K. Y. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2012, 324 (22) :3912-3917
[8]   The magnetic properties and reversal of Fe-Co nanowire arrays [J].
Chen, W ;
Tang, SL ;
Lu, M ;
Du, YW .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (26) :4623-4630
[9]   Magnetic electrodeposition [J].
Coey, JMD ;
Hinds, G .
JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 326 (1-2) :238-245
[10]   Observation of Bloch-point domain walls in cylindrical magnetic nanowires [J].
Da Col, S. ;
Jamet, S. ;
Rougemaille, N. ;
Locatelli, A. ;
Mentes, T. O. ;
Burgos, B. Santos ;
Afid, R. ;
Darques, M. ;
Cagnon, L. ;
Toussaint, J. C. ;
Fruchart, O. .
PHYSICAL REVIEW B, 2014, 89 (18)