On the cohomology of line bundles over certain flag schemes

被引:2
作者
Liu, Linyuan [1 ]
机构
[1] Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, Campus Pierre & Marie Curie, F-75252 Paris 05, France
关键词
Cohomology; Line bundles; Flag schemes; Weyl modules; Multinomial coefficients;
D O I
10.1016/j.jcta.2021.105448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be the group scheme SLd+1 over Z and let Q be the parabolic subgroup scheme corresponding to the simple roots alpha(2), ..., alpha(d-1). Then G/Q is the Z-scheme of partial flags {D-1 subset of H-d subset of V}. We will calculate the cohomology modules of line bundles over this flag scheme. We will prove that the only non-trivial ones are isomorphic to the kernel or the cokernel of certain matrices with multinomial coefficients. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 9 条
[1]  
[Anonymous], 1993, Algebraic Varieties
[2]   THE SUBMODULE STRUCTURE OF CERTAIN WEYL MODULES FOR GROUPS OF TYPE-AN [J].
DOTY, SR .
JOURNAL OF ALGEBRA, 1985, 95 (02) :373-383
[3]  
Irina D, 1983, VESCI AKAD NAVUK FMN, P18
[4]  
Jantzen J.C., 2003, MATH SURVEYS MONOGRA, V107
[5]  
Krattenthaler Christian, 1998, Seminaire Lotharingien de Combinatoire, V42
[6]   On the cohomology of line bundles over certain flag schemes II [J].
Liu, Linyuan ;
Polo, Patrick .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
[7]  
Liu Linyuan, ARXIV190308758MATHRT
[8]   PRODUCT EVALUATIONS OF LEFSCHETZ DETERMINANTS FOR GRASSMANNIANS AND OF DETERMINANTS OF MULTINOMIAL COEFFICIENTS [J].
PROCTOR, RA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 54 (02) :235-247
[9]  
SEITZ GM, 1987, MEM AM MATH SOC, V67, P1