THE MOTION OF POINT VORTEX DIPOLE ON THE ELLIPSOID OF REVOLUTION

被引:0
作者
Kim, Sun-Chul [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
关键词
point vortex; ellipsoid of revolution; perturbation expansion; geodesic; vortex dipole; SURFACES; VORTICES; SPHERE;
D O I
10.4134/BKMS.2010.47.1.073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A pair of point vortices of the same strength but opposite sign is called a vortex dipole. We consider the limiting case where two vortices approach infinitely close while the ratio of the strength to the distance kept constant. The motion of such point vortex dipole on the ellipsoid of revolution is investigated geometrically to conclude that the trajectory draws a geodesic up to the leading order of perturbation, whose direction is determined by the initial orientation of the dipole. Related issues are also remarked.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 12 条
[1]  
Berger M., 2003, A Panoramic View of Riemannian Geometry
[2]   Embedded surfaces with ergodic geodesic flows [J].
Burns, K ;
Donnay, VJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (07) :1509-1527
[3]   The N-vortex problem on a symmetric ellipsoid: A perturbation approach [J].
Castilho, Cesar ;
Machado, Helio .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (02)
[4]   Barotropic vortex pairs on a rotating sphere [J].
DiBattista, MT ;
Polvani, LM .
JOURNAL OF FLUID MECHANICS, 1998, 358 :107-133
[5]  
Dubrovin B.A, 1992, GRADUATE TEXTS MAT 1, V93
[6]   STABILITY OF STREETS OF VORTICES ON SURFACES OF REVOLUTION WITH A REFLECTION SYMMETRY [J].
HALLY, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (01) :211-217
[7]   A POINT VORTEX DIPOLE MODEL OF AN ISOLATED MODON [J].
HOBSON, DD .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (12) :3027-3033
[8]   Motion of three point vortices on a sphere [J].
Kidambi, R ;
Newton, PK .
PHYSICA D, 1998, 116 (1-2) :143-175
[9]   Vortex motion on surfaces with constant curvature [J].
Kimura, Y .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1981) :245-259
[10]  
Newton P. K., 2001, Applied Mathematical Sciences, V145