On the greatest and least prime factors of n!+1, II

被引:0
作者
Stewart, CL [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
来源
PUBLICATIONES MATHEMATICAE DEBRECEN | 2004年 / 65卷 / 3-4期
关键词
shifted factorials; prime factors;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let epsilon be a positive real number. We prove that for infinitely many odd integers n the least prime factor of n! + 1 is at most (root145-1/8 + epsilon)n and that for infinitely many positive integers it the greatest prime factor of n! + 1 exceeds (11/2 - epsilon)n.
引用
收藏
页码:461 / 480
页数:20
相关论文
共 9 条
[1]   ON SOME DIOPHANTINE PROBLEMS INVOLVING POWERS AND FACTORIALS [J].
BRINDZA, B ;
ERDOS, P .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 51 :1-7
[2]  
ERDOS P, 1976, J LOND MATH SOC, V13, P513
[3]  
HEATHBROWN DR, 1979, J LOND MATH SOC, V20, P177
[4]  
Le MH, 1996, PUBL MATH-DEBRECEN, V48, P145
[5]  
LIOUVILLE J, 1856, J MATH PURE APPL, V1, P351
[6]  
LUCA F, IN PRESS PRIME DIVIS
[7]  
Murty R, 2002, NUMBER THEORY FOR THE MILLENNIUM III, P43
[8]  
STEWART CL, 1976, THESIS U CAMBRIDGE
[9]   A complete resolution of a problem of Erdos and Graham [J].
Yu, KR ;
Liu, DH .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (03) :1235-1244