The zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions

被引:116
作者
Parra-Barraza, H
Hernández-Montiel, D
Lizardi, J
Hernández, J
Urbina, RH
Valdez, MA [1 ]
机构
[1] Univ Sonora Rosales & Transversal, Dept Fis, Dept Invest Polimeros & Mat, Hermosillo 83000, Sonora, Mexico
[2] Univ Sonora Rosales & Transversal, Dept Ciencias Quim Biol, Hermosillo 83000, Sonora, Mexico
[3] Ctr Invest Alimentac & Desarrollo, Hermosillo 83000, Sonora, Mexico
[4] Univ Sonora Rosales & Transversal, Dept Ingn Quim & Met, Hermosillo 83000, Sonora, Mexico
关键词
asphaltenes; zeta potential; surfactants; monolayers; critical micelle concentration;
D O I
10.1016/S0016-2361(03)00002-4
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We have investigated some surface properties of asphaltenes precipitated from crude oil with different volumes of n-heptane. According to the crude oil/n-heptane proportions used, asphaltenes are identified as 1:5, 1:15 and 1:40. Zeta potential results indicate that the amount of n-heptane determines the electrokintetic behaviour of asphaltenes in aqueous suspensions. Asphaltene 1:5 exhibits an isoelectric point (IEP) at pH 4.5 whereas asphaltenes 1:15 and 1:40 show an IEP at about pH 3. Surface charge on asphaltenes arises from the dissociation of acid functionalities and the protonation of basic functional groups. The presence of resins remaining on the asphaltene molecules may be responsible for the different IEP of asphaltene 1:5. Both sodium dodecyl sulfate (an anionic surfactant) and cetylpyridinium chloride (a cationic surfactant) were found to adsorb specifically onto asphaltenes. They reverse the sign of the zeta potential under certain conditions. These surfactants may be potential candidates to aid in controlling the stability of crude oil dispersions. Critical micelle concentration, interfacial tension measurements, and Langmuir isotherms at the air-water interface confirm the different nature of asphaltene 1:5, which also showed more solubility and a larger molecular size. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:869 / 874
页数:6
相关论文
共 25 条
[11]   Asphaltene molecular size and structure [J].
Groenzin, H ;
Mullins, OC .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (50) :11237-11245
[12]   Effects of the asphaltene and resin contents of the bitumens on the water-bitumen interface properties [J].
Jada, A ;
Salou, A .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2002, 33 (1-3) :185-193
[13]   Classification of asphaltenes via fractionation and the effect of heteroatom content on dissolution kinetics [J].
Kaminski, TJ ;
Fogler, HS ;
Wolf, N ;
Wattana, P ;
Mairal, A .
ENERGY & FUELS, 2000, 14 (01) :25-30
[14]   ELECTROKINETIC AND ADSORPTION PROPERTIES OF ASPHALTENES [J].
KOKAL, S ;
TANG, T ;
SCHRAMM, L ;
SAYEGH, S .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1995, 94 (2-3) :253-265
[15]   Electrophoretic mobility and stabilization of asphaltenes in low conductivity media [J].
Leon, O ;
Rogel, E ;
Torres, G ;
Lucas, A .
PETROLEUM SCIENCE AND TECHNOLOGY, 2000, 18 (7-8) :913-927
[16]   Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles [J].
León, O ;
Rogel, E ;
Urbina, A ;
Andújar, A ;
Lucas, A .
LANGMUIR, 1999, 15 (22) :7653-7657
[17]  
MALTHOTRA VM, 1989, ACS S TRAC EL PETR G
[18]  
Michel-Nguyen A, 2000, J MYCOL MED, V10, P39
[19]   Molecular weight and specific gravity distributions for athabasca and cold lake bitumens and their saturate, aromatic, resin, and asphaltene fractions [J].
Peramanu, S ;
Pruden, BB ;
Rahimi, P .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (08) :3121-3130
[20]   Asphaltic bitumen as colloid system [J].
Pfeiffer, JP ;
Saal, RNJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1940, 44 (02) :139-165