A novel convergence analysis of Robin-Robin domain decomposition method for Stokes-Darcy system with Beavers-Joseph interface condition

被引:11
作者
Liu, Yingzhi [1 ]
He, Yinnian [1 ]
Li, Xuejian [2 ]
He, Xiaoming [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
Stokes-Darcy system; Domain decomposition method; Robin condition; Convergence analysis; MODEL; PARALLEL;
D O I
10.1016/j.aml.2021.107181
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we demonstrate the convergence analysis of Robin-Robin domain decomposition method with finite element discretization for Stokes-Darcy system with Beavers-Joseph interface condition, with particular attention paid to the case which is convergent for small viscosity and hydraulic conductivity in practice. Based on the techniques of the discrete harmonic extension and discrete Stokes extension, the convergence is proved and the almost optimal geometric convergence rate is obtained for the case gamma(f) > gamma(p). Here gamma(f) and gamma(p) are positive Robin parameters introduced in Cao et al., 2011, which was not able to show the analysis for gamma(f) > gamma(p) but only numerically illustrated its importance to the convergence for the practical situation with small viscosity and hydraulic conductivity. The analysis result provides a general guideline of choice on the relevant parameters to obtain the convergence and geometric convergence rate. The numerical results verify the theoretical conclusion. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 19 条
[1]  
Adams Robert Alexander., 2003, Sobolev spaces
[2]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[3]   A DOMAIN DECOMPOSITION TECHNIQUE FOR STOKES PROBLEMS [J].
BRAMBLE, JH ;
PASCIAK, JE .
APPLIED NUMERICAL MATHEMATICS, 1990, 6 (04) :251-261
[4]  
Brenner SC., 2008, The Mathematical Theory of Finite Element Methods, V15, DOI DOI 10.1007/978-0-387-75934-0
[5]  
Cao YZ, 2014, MATH COMPUT, V83, P1617
[6]   Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition [J].
Cao, Yanzhao ;
Gunzburger, Max ;
He, Xiaoming ;
Wang, Xiaoming .
NUMERISCHE MATHEMATIK, 2011, 117 (04) :601-629
[7]   FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J].
Cao, Yanzhao ;
Gunzburger, Max ;
Hu, Xiaolong ;
Hua, Fei ;
Wang, Xiaoming ;
Zhao, Weidong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4239-4256
[8]  
Cao YZ, 2010, COMMUN MATH SCI, V8, P1
[9]   A PARALLEL ROBIN-ROBIN DOMAIN DECOMPOSITION METHOD FOR THE STOKES-DARCY SYSTEM [J].
Chen, Wenbin ;
Gunzburger, Max ;
Hua, Fei ;
Wang, Xiaoming .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) :1064-1084
[10]  
Discacciati M., 2004, Ph.D. thesis