Machine Learning-Based Detection Method for Wafer Test Induced Defects

被引:33
作者
Cheng, Ken Chau-Cheung [1 ]
Chen, Leon Li-Yang [1 ]
Li, Ji-Wei [1 ]
Li, Katherine Shu-Min [2 ]
Tsai, Nova Cheng-Yen [1 ]
Wang, Sying-Jyan [3 ]
Huang, Andrew Yi-Ann [1 ]
Chou, Leon [1 ]
Lee, Chen-Shiun [1 ]
Chen, Jwu E. [4 ]
Liang, Hsing-Chung [5 ]
Hsu, Chun-Lung [6 ]
机构
[1] NXP Semicond Taiwan Ltd, Dept Wafer Test, Kaohsiung 81170, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Comp Sci & Engn, Kaohsiung 80424, Taiwan
[3] Natl Chung Hsing Univ, Dept Comp Sci & Engn, Taichung 40227, Taiwan
[4] Natl Cent Univ, Dept Elect Engn, Chungli 32001, Taiwan
[5] Chung Yuan Christian Univ, Dept Elect Engn, Chungli 32023, Taiwan
[6] Ind Technol Res Inst, Informat & Commun Res Lab, Div Design Automat Technol, Hsinchu 31057, Taiwan
关键词
Needles; Fabrication; Machine learning; Fault diagnosis; Testing; Machine learning algorithms; Very large scale integration; Wafer test; wafer map; test-induced defects; site-dependent fault; test yield; machine learning; REGRESSION NETWORK; IDENTIFICATION; CLASSIFICATION; DIAGNOSIS; PATTERNS;
D O I
10.1109/TSM.2021.3065405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wafer test is carried out after integrated circuits (IC) fabrication to screen out bad dies. In addition, the results can be used to identify problems in the fabrication process and improve manufacturing yield. However, the wafer test itself may induce defects to otherwise good dies. Test-induced defects not only hurt overall manufacturing yield but also create problems for yield learning, so the source problems in testing should be identified quickly. In the wafer acceptance test process, dies are probed in a predetermined order, so test-induced defects, also known as site-dependent faults, exhibit specific patterns that can be effectively captured in test paths. In this paper, we analyze characteristics of test-induced defect patterns and define features that can be used by machine learning algorithms for the automatic detection of test-induced defects. Therefore, defective dies caused by the wafer test can be retested for yield improvement. Test data from six real products are used to validate the proposed method. Several machine learning algorithms have been applied, and experimental results show that our method is effective to distinguish between test-induced and fabrication-induced defects. On average, the prediction accuracy is higher than 97%.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 50 条
  • [11] Machine Learning Based Wafer Defect Detection
    Ma, Yuansheng
    Wang, Feng
    Xie, Qian
    Hong, Le
    Mellmann, Joerg
    Sun, Yuyang
    Gao, Shao Wen
    Singh, Sonal
    Venkatachalam, Panneerselvam
    Word, James
    DESIGN-PROCESS-TECHNOLOGY CO-OPTIMIZATION FOR MANUFACTURABILITY XIII, 2019, 10962
  • [12] Machine learning-based algorithmically generated domain detection?
    Wang, Zheng
    Guo, Yang
    Montgomery, Doug
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [13] Effective alerting for bridge monitoring via a machine learning-based anomaly detection method
    Kang, Juntao
    Wang, Lei
    Zhang, Wenbin
    Hu, Jun
    Chen, Xingxiang
    Wang, Dong
    Yu, Zechuan
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024,
  • [14] Machine Learning-Based Network Intrusion Detection Optimization for Cloud Computing Environments
    Samriya, Jitendra Kumar
    Kumar, Surendra
    Kumar, Mohit
    Wu, Huaming
    Gill, Sukhpal Singh
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7449 - 7460
  • [15] Improved VIDAR and machine learning-based road obstacle detection method
    Wang, Yuqiong
    Zhu, Ruoyu
    Wang, Liming
    Xu, Yi
    Guo, Dong
    Gao, Song
    ARRAY, 2023, 18
  • [16] Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms
    Sahu, Adyasha
    Das, Pradeep Kumar
    Meher, Sukadev
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 114
  • [17] Design and Performance Evaluation of a Machine Learning-Based Method for Intrusion Detection
    Zhang, Qinglei
    Hu, Gongzhu
    Feng, Wenying
    SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL-DISTRIBUTED COMPUTING 2010, 2010, 295 : 69 - +
  • [18] Machine Learning-based System Electromagnetic Environment Anomaly Detection Method
    Zhang Weisha
    Sun Jinguang
    Lu Jiazhong
    2018 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2018, : 115 - 117
  • [19] A survey on machine learning-based malware detection in executable files
    Singh, Jagsir
    Singh, Jaswinder
    JOURNAL OF SYSTEMS ARCHITECTURE, 2021, 112
  • [20] Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases
    Ogunpola, Adedayo
    Saeed, Faisal
    Basurra, Shadi
    Albarrak, Abdullah M.
    Qasem, Sultan Noman
    DIAGNOSTICS, 2024, 14 (02)