Defect reduction in silicon nanoparticles by low-temperature vacuum annealing

被引:32
作者
Niesar, S. [1 ]
Stegner, A. R. [1 ]
Pereira, R. N. [2 ,3 ]
Hoeb, M. [1 ]
Wiggers, H. [4 ,5 ]
Brandt, M. S. [1 ]
Stutzmann, M. [1 ]
机构
[1] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[2] Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal
[3] Univ Aveiro, I3N, P-3810193 Aveiro, Portugal
[4] Univ Duisburg Essen, Inst Verbrennung & Gasdynam, D-47048 Duisburg, Germany
[5] Univ Duisburg Essen, Ctr NanoIntegrat Duisburg Essen, CeNIDE, D-47048 Duisburg, Germany
关键词
annealing; elemental semiconductors; etching; nanoparticles; paramagnetic resonance; photoconductivity; photothermal spectroscopy; semiconductor thin films; silicon; silicon compounds; ELECTRON-SPIN-RESONANCE; SOLAR-CELLS; AMORPHOUS-SILICON; MICROWAVE REACTOR; NANOCRYSTALS; MECHANISM; SURFACES;
D O I
10.1063/1.3428359
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using electron paramagnetic resonance, we find that vacuum annealing at 200 degrees C leads to a significant reduction in the silicon dangling bond (Si-db) defect density in silicon nanoparticles (Si-NPs). The best improvement of the Si-db density by a factor of 10 is obtained when the vacuum annealing is combined with an etching step in hydrofluoric acid (HF), whereas HF etching alone only removes the Si-dbs at the Si/SiO(2) interface. The reduction in the Si-db defect density is confirmed by photothermal deflection spectroscopy and photoconductivity measurements on thin Si-NPs films. (C) 2010 American Institute of Physics. [doi:10.1063/1.3428359]
引用
收藏
页数:3
相关论文
共 28 条
[1]   Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals [J].
Dietmueller, Roland ;
Stegner, Andre R. ;
Lechner, Robert ;
Niesar, Sabrina ;
Pereira, Rui N. ;
Brandt, Martin S. ;
Ebbers, Andre ;
Trocha, Martin ;
Wiggers, Hartmut ;
Stutzmann, Martin .
APPLIED PHYSICS LETTERS, 2009, 94 (11)
[2]   Doping semiconductor nanocrystals [J].
Erwin, SC ;
Zu, LJ ;
Haftel, MI ;
Efros, AL ;
Kennedy, TA ;
Norris, DJ .
NATURE, 2005, 436 (7047) :91-94
[3]   Formation of Si-nanoparticles in a microwave reactor: Comparison between experiments and modelling [J].
Giesen, B ;
Wiggers, H ;
Kowalik, A ;
Roth, P .
JOURNAL OF NANOPARTICLE RESEARCH, 2005, 7 (01) :29-41
[4]   Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity [J].
Greenham, NC ;
Peng, XG ;
Alivisatos, AP .
PHYSICAL REVIEW B, 1996, 54 (24) :17628-17637
[5]   Luminescent Colloidal Dispersion of Silicon Quantum Dots from Microwave Plasma Synthesis: Exploring the Photoluminescence Behavior Across the Visible Spectrum [J].
Gupta, Anoop ;
Swihart, Mark T. ;
Wiggers, Hartmut .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) :696-703
[6]   HYDROGEN DESORPTION-KINETICS FROM MONOHYDRIDE AND DIHYDRIDE SPECIES ON SILICON SURFACES [J].
GUPTA, P ;
COLVIN, VL ;
GEORGE, SM .
PHYSICAL REVIEW B, 1988, 37 (14) :8234-8243
[7]   Air-stable all-inorganic nanocrystal solar cells processed from solution [J].
Gur, I ;
Fromer, NA ;
Geier, ML ;
Alivisatos, AP .
SCIENCE, 2005, 310 (5747) :462-465
[8]  
HERRING C, 1991, SEMICONDUCT SEMIMET, V5, P225
[9]   H-2-ASTERISK DEFECT IN CRYSTALLINE SILICON [J].
HOLBECH, JD ;
NIELSEN, BB ;
JONES, R ;
SITCH, P ;
OBERG, S .
PHYSICAL REVIEW LETTERS, 1993, 71 (06) :875-878
[10]   DIRECT MEASUREMENT OF GAP-STATE ABSORPTION IN HYDROGENATED AMORPHOUS-SILICON BY PHOTOTHERMAL DEFLECTION SPECTROSCOPY [J].
JACKSON, WB ;
AMER, NM .
PHYSICAL REVIEW B, 1982, 25 (08) :5559-5562