Template-based Question Answering using Recursive Neural Networks

被引:21
作者
Athreya, Ram G. [1 ]
Bansal, Srividya K. [1 ]
Ngomo, Axel-Cyrille Ngonga [2 ]
Usbeck, Ricardo [3 ]
机构
[1] Arizona State Univ, SCIDSE, Mesa, AZ 85212 USA
[2] Paderborn Univ, Data Sci Grp, Paderborn, Germany
[3] Fraunhofer IAIS, Dresden, Germany
来源
2021 IEEE 15TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2021) | 2021年
关键词
Question Answering; Recursive Neural Network;
D O I
10.1109/ICSC50631.2021.00041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most question answering (QA) systems over Linked Data, i.e. Knowledge Graphs, approach the question answering task as a conversion from a natural language question to its corresponding SPARQL query. A common approach is to use query templates to generate SPARQL queries with slots that need to be filled. Using templates instead of running an extensive NLP pipeline or end-to-end model shifts the QA problem into a classification task, where the system needs to match the input question to the appropriate template. This paper presents an approach to automatically learn and classify natural language questions into corresponding templates using recursive neural networks. Our model was trained on 5000 questions and their respective SPARQL queries from the preexisting LC-QuAD dataset grounded in DBpedia, spanning 5042 entities and 615 predicates. The resulting model was evaluated using the FAIR GERBIL QA framework resulting in 0.419 macro f-measure on LC-QuAD and 0.417 macro f-measure on QALD-7.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 21 条
[1]   A Quantitative Evaluation of Natural Language Question Interpretation for Question Answering Systems [J].
Asakura, Takuto ;
Kim, Jin-Dong ;
Yamamoto, Yasunori ;
Tateisi, Yuka ;
Takagi, Toshihisa .
SEMANTIC TECHNOLOGY (JIST 2018), 2018, 11341 :215-231
[2]  
Athreya R. G., 2020, ABS200413843 CORR, Vabs, P13843
[3]  
Bojanowski P, 2016, 160704606 ARXIV
[4]  
Chen D., 2014, P 2014 C EMP METH NA, P740, DOI DOI 10.3115/V1/D14-1082
[5]  
Chinea A, 2009, LECT NOTES COMPUT SC, V5768, P952, DOI 10.1007/978-3-642-04274-4_98
[6]   The Qanary Ecosystem: Getting New Insights by Composing Question Answering Pipelines [J].
Diefenbach, Dennis ;
Singh, Kuldeep ;
Both, Andreas ;
Cherix, Didier ;
Lange, Christoph ;
Auer, Soeren .
WEB ENGINEERING (ICWE 2017), 2017, 10360 :171-189
[7]  
Diefenbach Dennis, 2017, WDAqua-Core0: A Question Answering Component for the Research Community, P84
[8]   Evaluating Architectural Choices for Deep Learning Approaches for Question Answering over Knowledge Bases [J].
Hakimov, Sherzod ;
Jebbara, Soufian ;
Cimiano, Philipp .
2019 13TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2019, :110-113
[9]   Survey on challenges of Question Answering in the Semantic Web [J].
Hoeffner, Konrad ;
Walter, Sebastian ;
Marx, Edgard ;
Usbeck, Ricardo ;
Lehmann, Jens ;
Ngomo, Axel-Cyrille Ngonga .
SEMANTIC WEB, 2017, 8 (06) :895-920
[10]  
Kaufmann E, 2007, LECT NOTES COMPUT SC, V4825, P281