Ergodic theory and Diophantine approximation for translation surfaces and linear forms

被引:7
作者
Athreya, Jayadev [1 ]
Parrish, Andrew [2 ]
Tseng, Jimmy [3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98102 USA
[2] Eastern Illinois Univ, Dept Math & Comp Sci, Charleston, IL 61920 USA
[3] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
affine forms; translation surfaces; Diophantine approximation; Siegel mean value; Birkhoff genericity; counting lattice points; AFFINE FORMS; TRANSFORMATIONS; TRAJECTORIES; SYSTEMS; SPACES; FLOWS;
D O I
10.1088/0951-7715/29/8/2173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive results on the distribution of directions of saddle connections on translation surfaces using only the Birkhoff ergodic theorem applied to the geodesic flow on the moduli space of translation surfaces. Our techniques, together with an approximation argument, also give an alternative proof of a weak version of a classical theorem in multi-dimensional Diophantine approximation due to Schmidt (1960 Can. J. Math. 12 619-31, 1964 Trans. Am. Math. Soc. 110 493-518). The approximation argument allows us to deduce the Birkhoff genericity of almost all lattices in a certain submanifold of the space of unimodular lattices from the Birkhoff genericity of almost all lattices in the whole space and similarly for the space of affine unimodular lattices.
引用
收藏
页码:2173 / 2190
页数:18
相关论文
共 33 条
  • [1] [Anonymous], HDB DYNAMICAL SYST B
  • [2] THE DISTRIBUTION OF GAPS FOR SADDLE CONNECTION DIRECTIONS
    Athreya, J. S.
    Chaika, J.
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (06) : 1491 - 1516
  • [3] Athreya J.S., 2014, ARXIV14073573
  • [4] The gap distribution of slopes on the golden L
    Athreya, Jayadev S.
    Chaika, Jon
    Lelievre, Samuel
    [J]. RECENT TRENDS IN ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 631 : 47 - 62
  • [5] Spiraling of approximations and spherical averages of Siegel transforms
    Athreya, Jayadev S.
    Ghosh, Anish
    Tseng, Jimmy
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 383 - 404
  • [6] WINNING GAMES FOR BOUNDED GEODESICS IN MODULI SPACES OF QUADRATIC DIFFERENTIALS
    Chaika, Jonathan
    Cheung, Yitwah
    Masur, Howard
    [J]. JOURNAL OF MODERN DYNAMICS, 2013, 7 (03) : 395 - 427
  • [7] DANI SG, 1985, J REINE ANGEW MATH, V359, P55
  • [8] Badly approximable systems of affine forms, fractals, and Schmidt games
    Einsiedler, Manfred
    Tseng, Jimmy
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 660 : 83 - 97
  • [9] Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture
    Eskin, A
    Margulis, G
    Mozes, S
    [J]. ANNALS OF MATHEMATICS, 1998, 147 (01) : 93 - 141
  • [10] Asymptotic formulas on flat surfaces
    Eskin, A
    Masur, H
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 443 - 478