Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative

被引:24
|
作者
Gatti, Anthony A. [1 ,2 ]
Maly, Monica R. [1 ,3 ]
机构
[1] McMaster Univ, Sch Rehabil Sci, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
[2] NeuralSeg Ltd, Hamilton, ON, Canada
[3] Univ Waterloo, Dept Kinesiol, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cartilage; Deep learning; Magnetic resonance imaging; Osteoarthritis; Image processing; CLINICAL-TRIALS; RECOMMENDATIONS;
D O I
10.1007/s10334-021-00934-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Accurate and efficient knee cartilage and bone segmentation are necessary for basic science, clinical trial, and clinical applications. This work tested a multi-stage convolutional neural network framework for MRI image segmentation. Materials and methods Stage 1 of the framework coarsely segments images outputting probabilities of each voxel belonging to the classes of interest: 4 cartilage tissues, 3 bones, 1 background. Stage 2 segments overlapping sub-volumes that include Stage 1 probability maps concatenated to raw image data. Using six fold cross-validation, this framework was tested on two datasets comprising 176 images [88 individuals in the Osteoarthritis Initiative (OAI)] and 60 images (15 healthy young men), respectively. Results On the OAI segmentation dataset, the framework produces cartilage segmentation accuracies (Dice similarity coefficient) of 0.907 (femoral), 0.876 (medial tibial), 0.913 (lateral tibial), and 0.840 (patellar). Healthy cartilage accuracies are excellent (femoral = 0.938, medial tibial = 0.911, lateral tibial = 0.930, patellar = 0.955). Average surface distances are less than in-plane resolution. Segmentations take 91 +/- 11 s per knee. Discussion The framework learns to automatically segment knee cartilage tissues and bones from MR images acquired with two sequences, producing efficient, accurate quantifications at varying disease severities.
引用
收藏
页码:859 / 875
页数:17
相关论文
共 50 条
  • [1] Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative
    Anthony A. Gatti
    Monica R. Maly
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2021, 34 : 859 - 875
  • [2] Knee menisci segmentation using convolutional neural networks: data from the Osteoarthritis Initiative
    Tack, A.
    Mukhopadhyay, A.
    Zachow, S.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 (05) : 680 - 688
  • [3] Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative
    Ambellan, Felix
    Tack, Alexander
    Ehlke, Moritz
    Zachow, Stefan
    MEDICAL IMAGE ANALYSIS, 2019, 52 : 109 - 118
  • [4] AUTOMATIC KNEE CARTILAGE SEGMENTATION USING FULLY VOLUMETRIC CONVOLUTIONAL NEURAL NETWORKS FOR EVALUATION OF OSTEOARTHRITIS
    Raj, Archit
    Vishwanathan, Srikrishnan
    Ajani, Bhavya
    Krishnan, Karthik
    Agarwal, Harsh
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 851 - 854
  • [5] ACCURACY AND REPEATABILITY OF AUTOMATED FEMOROTIBIAL CARTILAGE SEGMENTATION USING CONVOLUTIONAL NEURAL NETWORKS - DATA FROM THE OSTEOARTHRITIS INITIATIVE HEALTHY REFERENCE COHORT
    Wirth, W.
    Kemnitz, J.
    Baumartner, C. F.
    Konukoglu, E.
    Maschek, S.
    Eckstein, F.
    Chaudhari, A.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S273 - S274
  • [6] A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative
    Yang Deng
    Lei You
    Yanfei Wang
    Xiaobo Zhou
    Journal of Digital Imaging, 2021, 34 : 833 - 840
  • [7] A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative
    Deng, Yang
    You, Lei
    Wang, Yanfei
    Zhou, Xiaobo
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) : 833 - 840
  • [8] Interactive knee cartilage extraction using efficient segmentation software: Data from the osteoarthritis initiative
    Gan, Hong-Seng
    Tan, Tian-Swee
    Wong, Liang-Xuan
    Tham, Weng-Kit
    Sayuti, Khairil Amir
    Karim, Ahmad Helmy Abdul
    Kadir, Mohammed Rafiq bin Abdul
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (06) : 3145 - 3157
  • [9] Knee Osteoarthritis Diagnosis With Unimodal and Multi-Modal Neural Networks: Data From the Osteoarthritis Initiative
    Yu Teh, Xin
    Yeoh, Pauline Shan Qing
    Wang, Tao
    Wu, Xiang
    Hasikin, Khairunnisa
    Lai, Khin Wee
    IEEE ACCESS, 2024, 12 : 146698 - 146717
  • [10] MULTI-STAGE SEGMENTATION OF THE FOVEA IN RETINAL FUNDUS IMAGES USING FULLY CONVOLUTIONAL NEURAL NETWORKS
    Sedai, Suman
    Tennakoon, Ruwan
    Roy, Pallab
    Cao, Khoa
    Garnavi, Rahil
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 1083 - 1086