Anomalous diffusion modeling by fractal and fractional derivatives

被引:346
作者
Chen, Wen [1 ]
Sun, Hongguang [1 ]
Zhang, Xiaodi [1 ]
Korosak, Dean [2 ]
机构
[1] Hohai Univ, Coll Civil Engn, Dept Engn Mech, Inst Soft Matter Mech, Nanjing 210098, Jiangsu, Peoples R China
[2] Univ Maribor, SI-2000 Maribor, Slovenia
基金
中国国家自然科学基金;
关键词
Heavy tail; Anomalous diffusion; Fractal derivative; Fractional derivative; Power law; FINITE-DIFFERENCE APPROXIMATIONS; RANDOM-WALK; LAW;
D O I
10.1016/j.camwa.2009.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper makes an attempt to develop a fractal derivative model of anomalous diffusion. We also derive the fundamental solution of the fractal derivative equation for anomalous diffusion, which characterizes a clear power law. This new model is compared with the corresponding fractional derivative model in terms of computational efficiency, diffusion velocity, and heavy tail property. The merits and distinctions of these two models of anomalous diffusion are then summarized. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1754 / 1758
页数:5
相关论文
共 24 条
[1]   Simulation of the continuous time random walk of the space-fractional diffusion equations [J].
Abdel-Rehim, E. A. ;
Gorenflo, R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) :274-283
[2]   Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion [J].
Abe, S ;
Thurner, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) :403-407
[3]   Diffusion on multifractals [J].
Anh, V. V. ;
Angulo, J. M. ;
Ruiz-Medina, M. D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E2043-E2056
[4]   V-Langevin equations, continuous time random walks and fractional diffusion [J].
Balescu, R. .
CHAOS SOLITONS & FRACTALS, 2007, 34 (01) :62-80
[5]   Time-space fabric underlying anomalous diffusion [J].
Chen, W .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :923-929
[6]   Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency [J].
Chen, W ;
Holm, S .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 115 (04) :1424-1430
[7]  
CHEN W, 2005, NLIN0511066 ARX
[8]   A speculative study of 2/3-order fractional Laplacian modeling of turbulence: Some thoughts and conjectures [J].
Chen, Wen .
CHAOS, 2006, 16 (02)
[9]  
Go JY, 2007, J SOLID STATE ELECTR, V11, P323, DOI [10.1007/s10008-005-0084-9, 10.1007/s10008-006-0108-0]
[10]   Discrete and continuous random walk models for space-time fractional diffusion [J].
Gorenflo, R ;
Vivoli, A ;
Mainardi, F .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :101-116