Protein dynamics during presynaptic-complex assembly on individual single-stranded DNA molecules

被引:72
作者
Gibb, Bryan [1 ]
Ye, Ling F. [2 ]
Kwon, YoungHo [3 ]
Niu, Hengyao [3 ]
Sung, Patrick [3 ]
Greene, Eric C. [1 ,4 ]
机构
[1] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10027 USA
[2] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
[3] Yale Univ, Sch Med, Dept Mol Biophys & Biochem, New Haven, CT 06510 USA
[4] Columbia Univ, Howard Hughes Med Inst, New York, NY 10032 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HUMAN RAD52 PROTEIN; BREAK REPAIR; HOMOLOGOUS RECOMBINATION; END-RESECTION; RAD51-MEDIATED RECOMBINATION; BINDING-PROTEINS; RPA; REPLICATION; YEAST; MECHANISM;
D O I
10.1038/nsmb.2886
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Homologous recombination is a conserved pathway for repairing double-stranded breaks, which are processed to yield single-stranded DNA overhangs that serve as platforms for presynaptic-complex assembly. Here we use single-molecule imaging to reveal the interplay between Saccharomyces cerevisiae RPA, Rad52 and Rad51 during presynaptic-complex assembly. We show that Rad52 binds RPA-ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52-RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Our work illustrates the spatial and temporal progression of the association of RPA and Rad52 with the presynaptic complex and reveals a new RPA-Rad52-Rad51-ssDNA intermediate, with implications for how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages of recombination.
引用
收藏
页码:893 / 900
页数:8
相关论文
共 55 条
[1]  
[Anonymous], 1993, An introduction to the bootstrap
[2]   Synergistic actions of Rad51 and Rad52 in recombination and DNA repair [J].
Benson, FE ;
Baumann, P ;
West, SC .
NATURE, 1998, 391 (6665) :401-404
[3]  
Bianco P R, 1998, Front Biosci, V3, pD570
[4]  
Broderick S, 2010, SUBCELL BIOCHEM, V50, P143, DOI 10.1007/978-90-481-3471-7_8
[5]   DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2 [J].
Cejka, Petr ;
Cannavo, Elda ;
Polaczek, Piotr ;
Masuda-Sasa, Taro ;
Pokharel, Subhash ;
Campbell, Judith L. ;
Kowalczykowski, Stephen C. .
NATURE, 2010, 467 (7311) :112-U149
[6]   The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends [J].
Chen, Xuefeng ;
Cui, Dandan ;
Papusha, Alma ;
Zhang, Xiaotian ;
Chu, Chia-Dwo ;
Tang, Jiangwu ;
Chen, Kaifu ;
Pan, Xuewen ;
Ira, Grzegorz .
NATURE, 2012, 489 (7417) :576-+
[7]   Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling [J].
Choi, Jun-Hyuk ;
Lindsey-Boltz, Laura A. ;
Kemp, Michael ;
Mason, Aaron C. ;
Wold, Marc S. ;
Sancar, Aziz .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (31) :13660-13665
[8]   Crystal structure of a Rad51 filament [J].
Conway, AB ;
Lynch, TW ;
Zhang, Y ;
Fortin, GS ;
Fung, CW ;
Symington, LS ;
Rice, PA .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (08) :791-796
[9]   Recombination at double-strand breaks and DNA ends: Conserved mechanisms from phage to humans [J].
Cromie, GA ;
Connelly, JC ;
Leach, DRF .
MOLECULAR CELL, 2001, 8 (06) :1163-1174
[10]   RPA antagonizes microhomology-mediated repair of DNA double-strand breaks [J].
Deng, Sarah K. ;
Gibb, Bryan ;
de Almeida, Mariana Justino ;
Greene, Eric C. ;
Symington, Lorraine S. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2014, 21 (04) :405-U152