Laplace series expansion of the internal potential of a homogeneous circular torus

被引:8
作者
Kondratyev, B. P. [1 ]
Trubitsina, N. G. [1 ]
机构
[1] Udmurt State Univ, Izhevsk 426034, Russia
关键词
Technical Physic; Spherical Function; Gauss Hypergeometric Function; Thin Ring; Internal Potential;
D O I
10.1134/S1063784210010044
中图分类号
O59 [应用物理学];
学科分类号
摘要
The internal potential of a homogeneous circular torus first is represented by a series expansion in spherical functions (Laplace series). Exact analytical formulas for the coefficients of this series are derived and it is shown that they can be expressed through the standard Gauss hypergeometric function depending only on the geometric parameter of the torus. Convergence of the series is proved and the radius of convergence is determined. The relation of the radius with the torus geometrical parameter is found. A special spherical shell, where the problem of expansion of the torus potential should be solved in additional investigations, is detected.
引用
收藏
页码:22 / 25
页数:4
相关论文
共 5 条
[1]  
Abramovitz M., 1971, Handbook of Mathematical Functions
[2]  
Antonov V.A., 1988, INTRO THEORY NEWTONI
[3]   Laplace series expansion of the potential of a homogeneous circular torus [J].
Kondrat'ev, B. P. ;
Dubrovskii, A. S. ;
Trubitsyna, N. G. ;
Mukhametshina, E. Sh. .
TECHNICAL PHYSICS, 2009, 54 (02) :176-181
[4]  
Kondratyev B. P., 2003, THEORY POTENTIAL EQU
[5]  
Kondratyev B. P, 2007, THEORY POTENTIAL NEW