Preparation and characterization of polytetrafluoroethylene (PTFE)/Thermally Expanded Graphite (TEG) nanocomposites

被引:22
作者
Sahli, M. [1 ]
Cable, A. [2 ]
Chetehouna, K. [2 ]
Hamamda, S. [3 ]
Gascoin, N. [2 ]
Revo, S. [4 ]
机构
[1] Univ Freres Mentouri, Lab Phys & Energy Sci, Constantine, Algeria
[2] INSA Ctr Val Loire, Lab PRISME, Bourges, France
[3] Univ Constantine 1, Lab Thermodynam & Surface Treatment Mat, Constantine, Algeria
[4] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
关键词
Nanocomposites; Physical properties; Thermal properties; PHASE-CHANGE MATERIALS; POLYPROPYLENE NANOCOMPOSITES; THERMAL-CONDUCTIVITY; CARBON-BLACK; COMPOSITES; NANOPARTICLES; WATER; PERFORMANCE; STORAGE; SURFACE;
D O I
10.1016/j.compositesb.2017.05.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, TEG-reinforced polytetrafluoroethylene (PTFE) nanocomposites were prepared. The structural properties of the I'I'FE/TEG composites were then investigated using X-ray diffraction (XRD) and infrared spectroscopy (FT-IR). Subsequently, the thermal stability, thermal resistance of the composites were studied through differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). The XRD results allowed to report a high degree of dispersion of the TEG inside of the PTFE matrix. Moreover, milling at high temperature was found to enhance the dispersion of the TEG inside of the polymer matrix. Furthermore, the results revealed an increase of the glass-transition temperature when using an increased concentration of TEG. This result confirms that the degradation of the TEG/PTFE nanocomposite occurs at a higher temperature with a greater TEG loading. These finds give an indication of the potential of TEG to improve the thermal properties and durability of PTFE, for instance with application in the field of aeronautics. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:175 / 181
页数:7
相关论文
共 44 条
[1]   Effect of structural and morphological features of a nanocarbon component on electrophysical properties of fluoroplastic composite materials [J].
Avramenko T.G. ;
Maksimova G.A. ;
Ivanenko E.A. ;
Mikhailov V.V. ;
Shevchenko I.P. ;
Revo S.L. .
Surface Engineering and Applied Electrochemistry, 2015, 51 (06) :509-516
[2]  
Burris DL, 2008, TRIBOL INTER ENG, V55, P403, DOI 10.1016/S1572-3364(08)55017-8
[4]   A new magnetic expanded graphite for removal of oil leakage [J].
Ding, Xiaohui ;
Wang, Rong ;
Zhang, Xin ;
Zhang, Yanzong ;
Deng, Shihuai ;
Shen, Fei ;
Zhang, Xiaohong ;
Xiao, Hong ;
Wang, Lilin .
MARINE POLLUTION BULLETIN, 2014, 81 (01) :185-190
[5]   Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites [J].
Dittrich, Bettina ;
Wartig, Karen-Alessa ;
Hofmann, Daniel ;
Muelhaupt, Rolf ;
Schartel, Bernhard .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2013, 24 (10) :916-926
[6]  
Dovbeshko GI, 2005, METALLOFIZ NOV TEKH+, V27, P1001
[7]  
Du L., 2008, THESIS
[8]   Expanded Graphite-Epoxy-Flexible Silica Composite Bipolar Plates for PEM Fuel Cells [J].
Dursun, B. ;
Yaren, F. ;
Unveroglu, B. ;
Yazici, S. ;
Dundar, F. .
FUEL CELLS, 2014, 14 (06) :862-867
[9]   Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing [J].
El Achaby, Mounir ;
Arrakhiz, Fatima-Ezzahra ;
Vaudreuil, Sebastien ;
el Kacem Qaiss, Abou ;
Bousmina, Mostapha ;
Fassi-Fehri, Omar .
POLYMER COMPOSITES, 2012, 33 (05) :733-744
[10]   Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials [J].
Fan, Li-Wu ;
Fang, Xin ;
Wang, Xiao ;
Zeng, Yi ;
Xiao, Yu-Qi ;
Yu, Zi-Tao ;
Xu, Xu ;
Hu, Ya-Cai ;
Cen, Ke-Fa .
APPLIED ENERGY, 2013, 110 :163-172