Model Checking with Residuals for g-estimation of Optimal Dynamic Treatment Regimes

被引:19
|
作者
Rich, Benjamin [1 ]
Moodie, Erica E. M. [1 ]
Stephens, David A. [1 ]
Platt, Robert W. [1 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2T5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
dynamic treatment regimes; optimal dynamic regimes; g-estimation; model checking; residuals; VARIABLE SELECTION;
D O I
10.2202/1557-4679.1210
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we discuss model checking with residual diagnostic plots for g-estimation of optimal dynamic treatment regimes. The g-estimation method requires three different model specifications at each treatment interval under consideration: (1) the blip model; (2) the expected counterfactual model; and (3) the propensity model. Of these, the expected counterfactual model is especially difficult to specify correctly in practice and so far there has been little guidance as to how to check for model misspecification. Residual plots are a useful and standard tool for model diagnostics in the classical regression setting; we have adapted this approach for g-estimation. We demonstrate the usefulness of our approach in a simulation study, and apply it to real data in the context of estimating the optimal time to stop breastfeeding.
引用
收藏
页数:24
相关论文
共 25 条
  • [1] Model selection for G-estimation of dynamic treatment regimes
    Wallace, Michael P.
    Moodie, Erica E. M.
    Stephens, David A.
    BIOMETRICS, 2019, 75 (04) : 1205 - 1215
  • [2] Doubly Robust Estimation of Optimal Dynamic Treatment Regimes
    Barrett J.K.
    Henderson R.
    Rosthøj S.
    Statistics in Biosciences, 2014, 6 (2) : 244 - 260
  • [3] Doubly robust estimation of optimal dynamic treatment regimes with multicategory treatments and survival outcomes
    Zhang, Zhang
    Yi, Danhui
    Fan, Yiwei
    STATISTICS IN MEDICINE, 2022, 41 (24) : 4903 - 4923
  • [4] Risk Factor Adjustment in Marginal Structural Model Estimation of Optimal Treatment Regimes
    Moodie, Erica E. M.
    BIOMETRICAL JOURNAL, 2009, 51 (05) : 774 - 788
  • [5] Penalized G-estimation for effect modifier selection in a structural nested mean model for repeated outcomes
    Jaman, Ajmery
    Wang, Guanbo
    Ertefaie, Ashkan
    Bally, Michele
    Levesque, Renee
    Platt, Robert W.
    Schnitzer, Mireille E.
    BIOMETRICS, 2025, 81 (01)
  • [6] Bayesian Empirical Likelihood Regression for Semiparametric Estimation of Optimal Dynamic Treatment Regimes
    Yu, Weichang
    Bondell, Howard
    STATISTICS IN MEDICINE, 2024, 43 (28) : 5461 - 5472
  • [7] Demystifying optimal dynamic treatment regimes
    Moodie, Erica E. M.
    Richardson, Thomas S.
    Stephens, David A.
    BIOMETRICS, 2007, 63 (02) : 447 - 455
  • [8] Bayesian likelihood-based regression for estimation of optimal dynamic treatment regimes
    Yu, Weichang
    Bondell, Howard D.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (03) : 551 - 574
  • [9] Optimal dynamic treatment regime estimation in the presence of nonadherence
    Spicker, Dylan
    Wallace, Michael P.
    Yi, Grace Y.
    BIOMETRICS, 2025, 81 (02)
  • [10] Regret-Regression for Optimal Dynamic Treatment Regimes
    Henderson, Robin
    Ansell, Phil
    Alshibani, Deyadeen
    BIOMETRICS, 2010, 66 (04) : 1192 - 1201