ON INITIAL VALUE AND TERMINAL VALUE PROBLEMS FOR SUBDIFFUSIVE STOCHASTIC RAYLEIGH-STOKES EQUATION

被引:14
作者
Caraballo, Tomas [1 ]
Tran Bao Ngoc [2 ]
Tran Ngoc Thach [3 ]
Nguyen Huy Tuan [4 ,5 ]
机构
[1] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, Seville 41012, Spain
[2] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[3] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
[4] Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[5] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2021年 / 26卷 / 08期
关键词
Time-fractional Rayleigh-Stokes equation; Wiener process; existence and regularity properties of solution; REACTION-DIFFUSION EQUATIONS; GENERALIZED 2ND-GRADE FLUID; EVOLUTION EQUATIONS; DERIVATIVE DRIVEN; DYNAMICS; SUBJECT; REGULARITY; SPACE;
D O I
10.3934/dcdsb.2020289
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study two stochastic problems for time-fractional Rayleigh-Stokes equation including the initial value problem and the terminal value problem. Here, two problems are perturbed by Wiener process, the fractional derivative are taken in the sense of Riemann-Liouville, the source function and the time-spatial noise are nonlinear and satisfy the globally Lipschitz conditions. We attempt to give some existence results and regularity properties for the mild solution of each problem.
引用
收藏
页码:4299 / 4323
页数:25
相关论文
共 36 条
[1]  
[Anonymous], 1992, STOCHASTIC EQUATIONS
[2]   An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid [J].
Bazhlekova, Emilia ;
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :1-31
[3]   Well-Posedness of the Multidimensional Fractional Stochastic Navier-Stokes Equations on the Torus and on Bounded Domains [J].
Debbi, Latifa .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (01) :25-69
[5]   A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives [J].
Dehghan, Mehdi ;
Abbaszadeh, Mostafa .
ENGINEERING WITH COMPUTERS, 2017, 33 (03) :587-605
[6]   The one-dimensional heat equation subject to a boundary integral specification [J].
Dehghan, Mehdi .
CHAOS SOLITONS & FRACTALS, 2007, 32 (02) :661-675
[7]   The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid [J].
Fetecau, Corina ;
Jamil, Muhammad ;
Fetecau, Constantin ;
Vieru, Dumitru .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (05) :921-933
[8]   Regularity of the solution for a final value problem for the Rayleigh-Stokes equation [J].
Hoang Luc Nguyen ;
Huy Tuan Nguyen ;
Zhou, Yong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (10) :3481-3495
[9]   Identifying initial condition of the Rayleigh-Stokes problem with random noise [J].
Hoang Luc Nguyen ;
Huy Tuan Nguyen ;
Mokhtar, Kirane ;
Xuan Thanh Duong Dang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) :1561-1571
[10]   Dynamic output feedback covariance control of stochastic dissipative partial differential equations [J].
Hu, Gangshi ;
Lou, Yiming ;
Christofides, Panagiotis D. .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (18) :4531-4542