Conditions for equality of hulls in the calculus of variations

被引:8
作者
Dolzmann, G
Kirchheim, B
Kristensen, J
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
Hull; Distance Function; Underlying Geometry; Quasiconvex Envelope; Quasiconvex Hull;
D O I
10.1007/s002050000098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We simplify and sharpen several results by K. Zhang concerning properties of quasiconvex hulls of sets and quasiconvex envelopes of their distance functions. The approach emphasizes the underlying geometry and in particular we show that K-pc = K-c implies K-rc = K-c if and only if min {m, n} less than or equal to 2 thus answering a question raised in [Z2].
引用
收藏
页码:93 / 100
页数:8
相关论文
共 15 条
  • [1] BASIC CALCULUS OF VARIATIONS - REMARKS
    BALL, JM
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1985, 116 (01) : 7 - 10
  • [2] RESTRICTIONS ON MICROSTRUCTURE
    BHATTACHARYA, K
    FIROOZYE, NB
    JAMES, RD
    KOHN, RV
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 843 - 878
  • [3] Federer H., 1959, Trans. Amer. Math. Soc., V93, P418, DOI [10.1090/S0002-9947-1959-0110078-1, DOI 10.1090/S0002-9947-1959-0110078-1, DOI 10.2307/1993504]
  • [4] KOHN RV, 1991, CONT MECH THERM, V3, P981
  • [5] MULLER S, 1999, SPRINGER LNM, V1713
  • [6] PREISS D, 1997, COMMUNICATION
  • [7] SERRE D, 1983, J MATH PURE APPL, V62, P177
  • [8] ON TARTAR CONJECTURE
    SVERAK, V
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (04): : 405 - 412
  • [9] Sverak V., 1992, P ROY SOC EDINB A, V120 A, P293
  • [10] Tartar L., 1983, SYSTEMS NONLINEAR PA, V111, P263