Note on 2-rainbow domination and Roman domination in graphs

被引:33
作者
Wu, Yunjian [1 ]
Xing, Huaming [2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Peoples R China
[2] Tianjin Univ Sci & Technol, Sch Sci, Tianjin 300457, Peoples R China
关键词
Domination number; Roman domination; 2-rainbow domination;
D O I
10.1016/j.aml.2010.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Roman dominating function of a graph G is a function f : V -> (0, 1, 2) such that every vertex with 0 has a neighbor with 2. The minimum off (V (G)) = Sigma(v is an element of V) f(v) over all such functions is called the Roman domination number gamma(R)(G). A 2-rainbow dominating function of a graph G is a function g that assigns to each vertex a set of colors chosen from the set (1, 2), for each vertex v is an element of V (G) such that g(v) = phi, we have boolean OR(u is an element of N(v))g(u) = {1, 2}.The 2-rainbow domination number gamma(r2)(G) is the minimum of w(g) = Sigma(v is an element of v) |g(v)| over all such functions. We prove gamma(r2)(G) <= gamma(R)(G) and obtain sharp lower and upper bounds for gamma(r2)(G) + gamma(r2)((G) over bar). We also show that for any connected graph G of order n >= 3. gamma(r2) (G) + < n. Finally, we give a proof of the characterization of graphs with gamma(R)(G) = gamma(G) + k for 2 <= k <= gamma(G). (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:706 / 709
页数:4
相关论文
共 12 条
[1]  
[Anonymous], 2013, Modern graph theory
[2]  
Bresar B, 2008, TAIWAN J MATH, V12, P213
[3]   On the 2-rainbow domination in graphs [J].
Bresar, Bostjan ;
Sumenjak, Tadeja Kraner .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) :2394-2400
[4]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[5]   On the Roman domination number of a graph [J].
Favaron, O. ;
Karami, H. ;
Khoeilar, R. ;
Sheikholeslami, S. M. .
DISCRETE MATHEMATICS, 2009, 309 (10) :3447-3451
[6]  
Hartnell B. L., 2004, Discussiones Mathematicae Graph Theory, V24, P389, DOI 10.7151/dmgt.1238
[7]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[8]   Defend the Roman Empire! [J].
Stewart, I .
SCIENTIFIC AMERICAN, 1999, 281 (06) :136-+
[9]  
Vizing V. G., 1968, Uspekhi Mat. Nauk, V23, P117
[10]  
WU Y, BOUNDS 2 RAINB UNPUB