On nonlinear integro-differential operators in generalized Orlicz-Sobolev spaces

被引:0
作者
Bardaro, C
Musielak, J
Vinti, G
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-60769 Poznan, Poland
[3] Univ Perugia, Dipartimento Matemat, CNR, I-06100 Perugia, Italy
关键词
approximation by strongly singular integrals; Orlicz-Sobolev space; modular space; nonlinear integro-differential operator; generalized Lipschitz condition;
D O I
10.1006/jath.2000.3463
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlinear integral operator T of the form (Tf)(s) = integral(G) K(t, f(sigma(s, t))) d mu(t), for s is an element of G, is defined and investigated in the measure space (G, Sigma, mu), where f and K are vector-valued functions with values in normed linear spaces E and F, respectively. The results are applied to the case of integro-differential operators in generalized Orlicz-Sobolev spaces. There are studied problems of existence, embeddings, and approximation by means of T. (C) 2000 Academic Press.
引用
收藏
页码:238 / 251
页数:14
相关论文
共 11 条
  • [1] [Anonymous], ANN POLON MATH
  • [2] BARDARO C., 1995, COMM MATH, V35, P25
  • [3] Bardaro C., 1998, Proc. A. Razmadze Math. Inst., V118, P3
  • [4] BARDARO C, 1996, MATH JPN, V43, P445
  • [5] Folland G.B., 1984, REAL ANAL MODERN TEC
  • [6] GOGATISHVILI A, 1993, P GEORG AC SCI MATH, V6, P617
  • [7] Mantellini I, 1996, NUMER FUNC ANAL OPT, V17, P143
  • [8] Musiaelak J., 1993, Math. Japon., V38, P83
  • [9] MUSIELAK A, 1998, MATH JPN, V48, P257
  • [10] MUSIELAK J, 1999, ATTI SEMIN MAT FIS, V57, P247