Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field

被引:35
作者
Domaretskiy, Daniil [1 ,2 ]
Philippi, Marc [1 ,2 ]
Gibertini, Marco [1 ,3 ,4 ]
Ubrig, Nicolas [1 ,2 ]
Gutierrez-Lezama, Ignacio [1 ,2 ]
Morpurgo, Alberto F. [1 ,2 ]
机构
[1] Univ Geneva, Dept Quantum Matter Phys, Geneva, Switzerland
[2] Univ Geneva, Grp Appl Phys, Geneva, Switzerland
[3] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Modena, Italy
[4] CNR Ist Nanosci, Ctr S3, Modena, Italy
基金
瑞士国家科学基金会;
关键词
EFFECT TRANSISTORS; BILAYER; SUPERCONDUCTIVITY; STATE;
D O I
10.1038/s41565-022-01183-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Double ionic gated transistors enable excellent control of the band structure of atomically thin semiconductors. Perpendicular electric fields as large as 3 V nm(-1) can fully quench the gap of bi- and few-layer WSe2. Perpendicular electric fields can tune the electronic band structure of atomically thin semiconductors. In bilayer graphene, which is an intrinsic zero-gap semiconductor, a perpendicular electric field opens a finite bandgap. So far, however, the same principle could not be applied to control the properties of a broader class of 2D materials because the required electric fields are beyond reach in current devices. To overcome this limitation, we design double ionic gated transistors that enable the application of large electric fields of up to 3 V nm(-1). Using such devices, we continuously suppress the bandgap of few-layer semiconducting transition metal dichalcogenides (that is, bilayer to heptalayer WSe2) from 1.6 V to zero. Our results illustrate an excellent level of control of the band structure of 2D semiconductors.
引用
收藏
页码:1078 / +
页数:7
相关论文
共 52 条
[1]   Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers [J].
Alam, Md Hasibul ;
Xu, Zifan ;
Chowdhury, Sayema ;
Jiang, Zhanzhi ;
Taneja, Deepyanti ;
Banerjee, Sanjay K. ;
Lai, Keji ;
Braga, Maria Helena ;
Akinwande, Deji .
NATURE COMMUNICATIONS, 2020, 11 (01)
[2]   Endeavor of Iontronics: From Fundamentals to Applications of Ion-Controlled Electronics [J].
Bisri, Satria Zulkarnaen ;
Shimizu, Sunao ;
Nakano, Masaki ;
Iwasa, Yoshihiro .
ADVANCED MATERIALS, 2017, 29 (25)
[3]   Band evolution of two-dimensional transition metal dichalcogenides under electric fields [J].
Chen, Peng ;
Cheng, Cai ;
Shen, Cheng ;
Zhang, Jing ;
Wu, Shuang ;
Lu, Xiaobo ;
Wang, Shuopei ;
Du, Luojun ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Sun, Jiatao ;
Yang, Rong ;
Shi, Dongxia ;
Liu, Kaihui ;
Meng, Sheng ;
Zhang, Guangyu .
APPLIED PHYSICS LETTERS, 2019, 115 (08)
[4]   Electrically Tunable Bandgaps in Bilayer MoS2 [J].
Chu, Tao ;
Ilatikhameneh, Hesameddin ;
Klimeck, Gerhard ;
Rahman, Rajib ;
Chen, Zhihong .
NANO LETTERS, 2015, 15 (12) :8000-8007
[5]  
Costanzo D, 2016, NAT NANOTECHNOL, V11, P339, DOI [10.1038/NNANO.2015.314, 10.1038/nnano.2015.314]
[6]   Bandstructure modulation of two-dimensional WSe2 by electric field [J].
Dai, Xianqi ;
Li, Wei ;
Wang, Tianxing ;
Wang, Xiaolong ;
Zhai, Caiyun .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (08)
[7]   Efficient electrical control of thin-film black phosphorus bandgap [J].
Deng, Bingchen ;
Tran, Vy ;
Xie, Yujun ;
Jiang, Hao ;
Li, Cheng ;
Guo, Qiushi ;
Wang, Xiaomu ;
Tian, He ;
Koester, Steven J. ;
Wang, Han ;
Cha, Judy J. ;
Xia, Qiangfei ;
Yang, Li ;
Xia, Fengnian .
NATURE COMMUNICATIONS, 2017, 8
[8]   Identifying atomically thin crystals with diffusively reflected light [J].
Domaretskiy, Daniil ;
Ubrig, Nicolas ;
Gutierrez-Lezama, Ignacio ;
Tran, Michael K. ;
Morpurgo, Alberto F. .
2D MATERIALS, 2021, 8 (04)
[9]   Electrically tunable band gap in silicene [J].
Drummond, N. D. ;
Zolyomi, V. ;
Fal'ko, V. I. .
PHYSICAL REVIEW B, 2012, 85 (07)
[10]   Electric-double-layer field-effect transistors with ionic liquids [J].
Fujimoto, Takuya ;
Awaga, Kunio .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (23) :8983-9006