Impulsive fractional differential equations with variable times

被引:24
|
作者
Benchohra, Mouffak [1 ]
Berhoun, Farida [1 ]
机构
[1] Univ Sidi Bel Abbis, Math Lab, Sidi Bel Abbes 22000, Algeria
关键词
Initial value problem; Impulses; Variable times; Caputo fractional derivative; Fractional integral; Existence; Fixed point; EXISTENCE; ORDER; UNIQUENESS;
D O I
10.1016/j.camwa.2009.05.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish sufficient conditions for the existence of solutions for a class of initial value problem for impulsive fractional differential equations with variable times involving the Caputo fractional derivative. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1245 / 1252
页数:8
相关论文
共 50 条
  • [31] Multiterm Impulsive Caputo-Hadamard Type Differential Equations of Fractional Variable Order
    Benkerrouche, Amar
    Souid, Mohammed Said
    Stamov, Gani
    Stamova, Ivanka
    AXIOMS, 2022, 11 (11)
  • [32] Analysis of Impulsive φ-Hilfer Fractional Differential Equations
    Kucche, Kishor D.
    Kharade, Jyoti P.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (05)
  • [33] Stability of ψ-Hilfer impulsive fractional differential equations
    Sousa, J. Vanterler da C.
    Kucche, Kishor D.
    Capelas de Oliveira, E.
    APPLIED MATHEMATICS LETTERS, 2019, 88 : 73 - 80
  • [34] IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Benchohra, Mouffak
    Seba, Djamila
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2009,
  • [35] Ultimate boundedness of impulsive fractional differential equations
    Xu, Liguang
    Hu, Hongxiao
    Qin, Fajin
    APPLIED MATHEMATICS LETTERS, 2016, 62 : 110 - 117
  • [36] On the solutions for impulsive fractional functional differential equations
    Chen F.
    Chen A.
    Wang X.
    Differential Equations and Dynamical Systems, 2009, 17 (4) : 379 - 391
  • [37] On Approximate Solutions Of Impulsive Fractional Differential Equations
    Jain, Rupali Shikharchnad
    Reddy, Buruju Surendranath
    Kadam, Sandhyatai Digambarrao
    APPLIED MATHEMATICS E-NOTES, 2019, 19 : 27 - 37
  • [38] On the Existence of Solutions for Impulsive Fractional Differential Equations
    Guan, Yongliang
    Zhao, Zengqin
    Lin, Xiuli
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [39] On a new class of impulsive fractional differential equations
    Wang, JinRong
    Zhou, Yong
    Lin, Zeng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 649 - 657
  • [40] Oscillation of impulsive conformable fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    OPEN MATHEMATICS, 2016, 14 : 497 - 508