Fractional characteristic functions, and a fractional calculus approach for moments of random variables

被引:6
作者
Tomovski, Zivorad [1 ]
Metzler, Ralf [2 ]
Gerhold, Stefan [3 ]
机构
[1] Univ Ostrava, Fac Sci, Dept Math, 30 Dubna 22, Dubna 70103, Czech Republic
[2] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25,Haus 28, D-14476 Potsdam, Germany
[3] TU Wien, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
关键词
Fractional calculus (primary); Characteristic function; Mittag-Leffler function; Fractional moments; Mellin transform;
D O I
10.1007/s13540-022-00047-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a fractional variant of the characteristic function of a random variable. It exists on the whole real line, and is uniformly continuous. We show that fractional moments can be expressed in terms of Riemann-Liouville integrals and derivatives of the fractional characteristic function. The fractional moments are of interest in particular for distributions whose integer moments do not exist. Some illustrative examples for particular distributions are also presented.
引用
收藏
页码:1307 / 1323
页数:17
相关论文
共 27 条
[1]   Fractional calculus approach to the statistical characterization of random variables and vectors [J].
Cottone, Giulio ;
Di Paola, Mario ;
Metzler, Ralf .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (05) :909-920
[2]  
Gerhold S., 2022, ARXIV211102747
[3]  
Gorenflo R., 2020, Mittag-Leffler functions, related topics and applications, V2nd, DOI DOI 10.1007/978-3-662-43930-2
[4]  
Gradshteyn I. S., 2007, Table of integrals, series, and products, V7th
[5]   FRACTIONAL MASTER-EQUATIONS AND FRACTAL TIME RANDOM-WALKS [J].
HILFER, R ;
ANTON, L .
PHYSICAL REVIEW E, 1995, 51 (02) :R848-R851
[6]  
Hilfer R., 1997, SCALE INVARIANCE, P53, DOI [10.1007/978-3-662-09799-1_3, DOI 10.1007/978-3-662-09799-1_3]
[7]   Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative [J].
Jumarie, Guy .
APPLIED MATHEMATICS LETTERS, 2009, 22 (11) :1659-1664
[8]  
Kilbas A., 2004, H-transforms: Theory and Applications
[9]  
Kiryakova V., 1994, GEN FRACTIONAL CALCU
[10]   Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus [J].
Kiryakova, VS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :241-259